Hrvatske vode
 
Analiza utjecaja vjetra, plimnih oscilacija i razdiobe gustoće na izmjenu mora kroz propuste u marinama: primjer marine Ičići
Analysis of the impact of winds, tide oscillations and density distribution on the sea exchange through culverts in the marinas as exemplified by the Ičići marina

Goran Lončar1, Dalibor Carević1, Damjan Bujak1, Ivana Bartolić2, Gordana Beg Plakar3

Sažetak/Abstract: 

Prikazani su rezultati provedenih 3D numeričkih simulacija cirkulacije i izmjene mora s ciljem kvantifikacije doprinosa cijevnih propusta u izmjeni mora iz akvatorija marine s morem iz okolnog područja. Osim djelovanja vjetra i plimnih oscilacija u numeričkom modelu uvažena je i prostorno/vremenska promjenjivost temperature i saliniteta u profilima otvorenih granica modela, propusta i ulaza u marinu. Prvotno je analizirana marina hipotetskih geometrijskih obilježja: duljina 300m, širina 150m, varijabilne dubine od 3 do 7m. Varirana je širina ulaza u marinu (25m i 50m), pozicije cijevnih propusta (4 pozicije), smjer i brzina vjetra (N, NE, E, SE, S, SW, W, NW ; 1, 3, 5 Bf), geografska lokacija (sjeverni jadran – Rovinj ; južni jadran – Dubrovnik), doprinos gradijenta gustoće mora. Nastavno su provedene numeričke simulacije za marinu Ičići, uzimajući u obzir stvarnu geometriju zaštitnih građevina (lukobrana), realistične oceanografske uvjete (dubine, dinamika morskih razi, temperatura i salinitet mora) i djelovanje vjetra. Temeljem dobivenih rezultata predložena je i praktična metodologija za izbor pozicije cijevnih propusta u tijelu zaštitne građevine marine.

 

The paper presents the results of the conducted 3D numerical simulations of the sea circulation and exchange with the aim to quantify the contribution of pipe culverts to the sea exchange from the marina area and the surrounding sea. In addition to wind action and tide oscillations, the numerical model also takes into account the spatial/temporal changes in temperature and salinity in the profiles of open boundaries of the model, culverts and the marina entrance. Initially, a marine of hypothetical geometric characteristics was analyzed – with a length of 300m, width of 150m and variable depth of 3 - 7m. The following elements were varied: the width of the marine entrance (25m and 50m), positions of pipe culverts (4 positions), wind direction and velocity (N, NE, E, SE, S, SW, W, NW; 1, 3, 5 Bf), geographical location (northern Adriatic – Rovinj; southern Adriatic – Dubrovnik) and the contribution of the sea density gradient. Following this, numerical simulations were conducted for the Ičići marina by taking into consideration the actual geometry of the protection facilities (breakwater), realistic oceanographic conditions (depth, sea level dynamics, sea s temperature and salinity) and wind action. Based on the obtained results, a practical methodology for selecting the positions of pipe culverts in the structure of the marina protective facility was also proposed.

Kategorija: 
Pregledni članak / Review Paper
Ključne riječi/Key words: 

cijevni propust, marina, Jadran, numerički model

pipe culvert, marina, the Adriatic, numerical model

Podaci o autorima/Authors affiliations: 

1Građevinski fakultet Sveučilišta u Zagrebu, Kačićeva 26, Zagreb, gloncar@grad.hr

 

2Tehničko veleučilište Zagreb, Graditeljski odjel, Avenija Većeslava Holjevca 15, Zagreb

 

3Institut za oceanografiju i ribarstvo, Šetalište I. Meštrovića 63, Split

Literatura/References: 

Balas, L., Inan, A. (2010.): Modelling of Induced Circulation, WSEAS Transactions on Fluid Mechanics, 5 (3), str. 132-143.

 

Carević, D., Lončar, G., Kuspilić, N. (2014.): Tehničko ekonomski parametri marina u Hrvatskoj, Građevinar, 66 (10), str. 909-915.

 

DHMZ (2004): Vjetrovalna klima za luku Rijeka, Zagreb, 56 str.

 

Falconer, R.A., Gouping, Y. (1991.): Effects on depth, bed slope and scaling on tidal currents and exchange in a laboratory model harbor, Proc. Institution civil engineers, Part 2 research & theory, 91, str. 561-576.

 

Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., Brooks, N.H. (1979.) Mixing in Inland and Coastal Waters, Academic Press, London, 483 str.

 

Fountoulis, G., Memos, C. (2005.): Optimization of openings for water renewal in a harbor basin, Journal of Marine Environmental Engineering, 7 (4), str. 297–306.

 

Nece, R.A. (1984.): Planform effects on tidal flushing of marinas, Journal of Waterway, Port, Coastal and Ocean Engineering, 110 (2), str. 251-269.

 

Oakey, N. S., Elliott, J. A. (1982.): Dissipation Within The Surface Mixed Layer, J. Phys. Oceanography, 12, str. 171-185.

 

Ozhan, E., Tore, E. (1992.): Studies for improving flushing ability of Marmaris marina, Publ. by Comp. Mech. Publ, Southampton, 267 str.

 

Rodi, W. (1987.): Examples of calculation methods for flow and mixing in stratified fluids, Journal of Geophysical Research, 92(C5), str. 5305-5328.

 

Schwartz, R.A.. (1989.): Flushing behavior of a coastal marina, 21rd Coastal Engineering Conference, Malaga, Spain, str. 2626-2640.

 

Smagorinsky, J. (1993.): Some historical remarks on the use of nonlinear viscosities, In: Large eddy simulations of complex engineering and geophysical flows, B. Galperin and S. Orszag (eds.), Cambridge University Press, str. 1-34.

 

Stagonas, D., Gerald, M., Magagna, D., Warbrick, D. (2009.): Fundamental investigation of water flow in harbors through a flushing culvert, 33rd IAHR Congress: Water Engineering for a Sustainable Enviroment, Van Cuver, Canada, str. 7257 – 7265.

 

Stamou A I., Kapetanaki M., Christodoulou G., Rajar R., Cetina M. (2001.): Mathematical Modeling of Flow and Pollution in Marinas, Proceedings of the 7th Int. Conf. on Environmental Science and Technology, Syros, Greece, str. 830-837.

 

Stamou, A.I., Katsiris, I.K., Moutzouris, C.I., Tsoukala, V.K. (2004.): Improvement of marina design technology using hydrodynamic models, Global Nest journal, 6 (1), str. 63–72.

 

Song, Y., Haidvogel, D. (1994.): A semi-implicit ocean circulation model using a generalised topography-following coordinate system, Journal of Comp. Physics, 115, str. 228-244.

 

Tsoukala V.K., Katsardi, V., Belibassakis, K.A. (2014.): Wave transformation through flushing culverts operating at seawater level in coastal structures, Ocean Engineering, 89, str. 211–229.

 

Tsoukala, V.K., Moutzouris, C.I. (2003.): Field measurements of marina flushing and dissolved oxygen penetration in a harbor basin through water entrance channels, 3rd Panhellenic Conference of Harbor Works, Athens, Greece, str. 607-619.

 

Tsoukala, V.K., Moutzouris, C.I. (2005.): Field measurements of dissolved oxygen in the Piraeus Harbor basin, Journal of Marine Environmental Engineering, 7 (4), str. 307-316.

 

Tsoukala, V.K., Moutzouris, C.I. (2009.): Wave transmission in harbors through flushing culverts, Ocean Engineering, 36, str. 434–445.

 

Tsoukala, V.K., Gaitanis, C.K., Stamou, A.I., Moutzouris, C.I. (2010.): Wave and dissolved oxygen transmission analysis in harbors using flushing culverts: an experimental approach, Global nest journal, 12 (2): str. 152-160.

 

US Army Corps of Engineers (2002.): Coastal Engineering Manual (CEM), EM 1110-2-1100.

 

Weston Solutions, Inc. (2013.): Shelter Island Yacht Basin Tidal Flushing Modeling and Engineering Feasibility Study, Port of San Diego 3165 Pacific Highway San Diego, California, 29 str.

 

Wu, J. (1994.): The sea surface is aerodynamically rough even under light winds, Boundary layer Meteorology, 69, str. 149-158.