Hrvatske vode
 
Katalitička obrada fenolnih otpadnih voda
Catalytic treatment of phenolic wastewater

Karolina Maduna1, Stanka Zrnčević1

Sažetak/Abstract: 

U radu je ispitan utjecaj različitih tipova zeolitnih nosača na aktivnost i stabilnost Cu/ZSM5, Cu/Y i Cu/X katalizatora korištenih za obradu fenolne (modelne) otpadne vode vodikovim peroksidom. Katalizatori su pripravljeni ionskom izmjenom komercijalnih ZSM5, Y i X zeolita. Karakterizacija katalizatora je obuhvaćala rendgensku difrakcijsku analizu (XRD), skenirajuću elektronsku mikrografiju (SEM), infracrvenu spektroskopiju (FTIR), elementarnu analizu (AAS) te određivanje specifične površine standardnom BET metodom. Reakcija je provođena u šaržnom reaktoru pri atmosferskom tlaku, različitim temperaturama (323 K – 353 K), konstantnoj koncentraciji fenola (0,01 mol dm-3) i vodikovog peroksida (0,1 mol dm-3) te masi katalizatora (0,5 g dm-3). Djelotvornost katalizatora praćena je preko konverzije fenola, ukupnog organskog ugljika te skidanja bakra s nosača. Utvrđeno je da je Cu/X katalizator aktivniji i stabilniji od Cu/Y i Cu/ZSM5 katalizatora te da je pri blagim reakcijskim uvjetima pogodan za obradu fenolne otpadne vode.

 

The paper examines the impact of different types of zeolite supports on the activity and stability of the Cu/ZSM5, Cu/Y and Cu/X catalyzers used in phenolic (model) wastewater treatment by means of hydrogen peroxide. The catalyzers were prepared by means of ion exchange of the commercial ZSM5, Y and X zeolite. The catalyzer characterization included x-ray powder diffraction (XRD), scanning electron microscope (SEM) micrography), infrared spectroscopy (FTIR), elementary analysis (AAS) and the determination of specific surface by the standard BET method. The reaction was conducted in a batch reactor at the atmospheric pressure, different temperatures (323 K - 353 K), constant concentration of phenol (0.01 mol dm-3) and hydrogen peroxide (0.1 mol dm-3) and catalyzer mass (0,5 g dm-3). The catalyzer efficiency was monitored by means of phenol conversion, total organic carbon and copper removal from the support. It was determined that the Cu/X catalyzer is more active and stable than the Cu/Y and Cu/ZSM5 catalyzers and that it is suitable for phenolic wastewater treatment at mild reaction conditions.

Kategorija: 
Izvorni (originalni) znanstveni članak / Original Scientific Paper
Ključne riječi/Key words: 

obrada otpadne vode, oksidacija fenola, vodikov peroksid, katalizatori, Cu/X, Cu/Y, Cu/ZSM5

wastewater treatment, phenol oxidation, hydrogen peroxide, catalyzers, Cu/X, Cu/Y, Cu/ZSM5

Podaci o autorima/Authors affiliations: 

1Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu, Marulićev trg 19, Zagreb, szrnce@fkit.hr

Literatura/References: 

Abrahams S.C.; Collin R.L.; Lipscomb W.N. (1951.): The crystal structure of hydrogen peroxide. Acta Crystallographic, 4, 15-20.

 

Adam F.; Andas J.; Rahman A.I. (2010.): A study on the oxidation of phenol by heterogeneous iron silica catalyst. The Chemical Engineering Journal, 165, 658-667.

 

Ahmaruzzaman M. (2008.): Adsorption of phenolic compounds on low-cost adsorbents: A review. Advanceed Colloidal Interface Science, 143, 48-67.

 

Al-Khalid T.; El-Naas M.H. (2012.): Aerobic biodegradation of phenols: A comprehensive review. Critical Reviews in Environmental Science and Technology, 42, 1631-1681.

 

Baerlocher C.; Meier W.M.; Olson D.H. (2007.): Atlas of zeolite framework types, 6 ed., Elsevier, Amsterdam.

 

Blanco M.; Martinez A.; Marcaide A.; Aranzabe E.; Aranzabe A. (2014.): Heterogeneous Fenton catalyst for the efficient removal of azo dyes in water. American Journal of Analytical Chemistry, 5, 490-499.

 

Bousba S.; Meniai A.H. (2014.): Removal of phenol from water by adsorption onto sewage sludge based adsorbent. Chemical Engineering Transactions, 40, 235-240.

 

Bruce R.M.; Santodonato J.; Neal M.W. (1987.): Summary review of the health effects associated with phenol. Toxicology and Industrial Health, 3, 535-568.

 

Bulánek R.; Wichterlová B.; Sobalík Z., Tichý J. (2001.): Reducibility and oxidation activity of Cu ions in zeolites. Effect of Cu ion coordination and zeolite framework composition; Applied Catalysis B: Environmental, 31, 13–25.

 

Carl P.J.; Vaughan D.E.; Goldfarb D. (2006.): High field 27Al ENDOR reveals the coordination mode of Cu2+ in low Si/ Al zeolites. Journal of American Chemical Society, 128, 7160-7171.

 

Castro I.U.; Stüber F.; Fabregat A.; Font J.; Fortuny A.; Bengoa C. (2009.). Supported Cu(II) polymer catalysts for aqueous phenol oxidation. Journal of Hazardous Materials, 163, 809-815.

 

Centi G.; Perathoner S.; Torre T.; Verduna M.G. (2000.): Catalytic wet oxidation with H2O2 of carboxylic acids on homogeneous and heterogeneous Fenton-type catalysts. Catalysis Today, 55, 61–69

 

Chasib K.F. (2013.): Extraction of phenolic pollutants (phenol and p-chlorophenol) from industrial wastewater. Journal of Chemical Engineering Data, 58, 1549–1564.

 

Chen, A.; Ma, X.; Sun, H. (2008.): Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites. Journal of Hazardous Materials, 156, 568–575.

 

Chiong T.; Lau S.Y.; Khor E.H.; Danquah M.K. (2014.): Enzymatic approach to phenol removal from wastewater using peroxidases. OA Biotechnology, 10, 3-9.

 

Dakhil I.H. (2013.): Removal of phenol from industrial wastewater using sawdust. Research Inventy: International Journal of Engineering and Science, 3, 25-31.

 

Dědeček J.; Sobalík Z.; Wichterlová B. (2012.): Siting and distribution of framework aluminium atoms in siliconrich zeolites and impact on catalysis, Catalysis reviews: Science and Engineering, 54, 135-223.

 

de Morais P.; Stoichev T.; Basto M.C.P.; Vasconcelos M.T.S.D. (2012.): Extraction and pre-concentration techniques for chromatographic determination of chlorophenols in environmental and food samples. Talanta, 89, 1–11.

 

Eftaxias A.; Font J.; Fortuny A.; Fabregat A.; F. Stüber F. (2006.): 23 Catalytic wet air oxidation of phenol over active carbon catalyst. Global kinetic modelling using simulated annealing. Applied Catalysis B: Environmental, 67, 12–23.

 

Elci L.; Kolbe N.; Elci S.G.; Anderson J.T. (2011.): Solid phase extractive pre-concentration coupled to gas chromatography– atomic emission detection for the determination of chlorophenols in water samples.

Talanta, 85, 551–555.

 

Fierro V.; Torné-Fernandez V.; Montané D.; Celzard A.(2008.): Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Materials, 111, 276-284.

 

Greminger, D.C.; Burns, G.P.; Lynn, S.; Hanson, D.N.; King, C.J. (1982.): Solvent extraction of phenols from water. Industrial and Engineering Chemistry, Process Design and Development, 21, 51-54.

 

Guliants V.V.; Mullhaupt J.T.; Newsam J.M.; Gorman A.M.; Freeman C.M. (1999.): Predicting locations of nonframework species in zeolite materials. Catalysis Today, 50, 661-668.

 

Huang K.; Xu Y.; Wang L.; Wu D. (2015.): Heterogeneous catalytic wet peroxide oxidation of simulated phenol wastewater by copper metal–organic frameworks. RSC Advances, 5, 32795-32803.

 

Ibrahim M.S.; Ali H.I.; Taylor K.E.; Biswas N.; Bewtra J.K. (2011.): Enzyme catalyzed removal of phenol from refinery waste water. Water Environment Research, 73, 165-172.

 

Inchaurrondo N.; Cechinia J.; Fontb J.; Haurea P. (2012.): Strategies for enhanced CWPO of phenol solutions. Applied Catalysis B: Environmental, 111-112, 641-648.

 

Iurascu B.; Siminiceanu I.; Vione D.; Vicente M.A.; Gil A. (2009.): Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fetreated laponite. Water Research, 43, 1313-1322.

 

Jabrou S.N. (2012.): Extraction of phenol from industrial water using different solvents. Research Journal of Chemical Sciences, 2, 1-12.

 

Kaale L.D.; Katima J.H.Y. (2013.): Performance of activated carbons in the catalytic wet peroxide oxidation (CWPO) of maleic acid. Journal of Engineering and Technology Research, 5, 189-199.

 

Kurian M.; Eldhose A.,;Thasleenabi R. M. (2012.): Mild temperature oxidation of phenol over rare earth exchanged aluminum pillared montmorillonites. International Journal of Environmental Research, 6, 669-676.

 

Lamberti C.; Spoto G.; Scarano D.; Paze C.; Salvataggio M.; Bordiga S.; Zecchina A.; Turnes Palomino G.; D’Acapito F. (1997.): CuI-Y and CuII-Y zeolites: a XANES, EXAFS and visible–NIR study. Chemical Physic Letters, 269, 500–508.

 

Li C.W.; Chen Y.M.; Chiou Y.C.; Liu C.K. (2007.): Dye wastewater treated by Fenton process with ferrous ions generated from iron-containing sludge. Journal of Hazardous Materials, 144, 570-576.

 

Lin K-S.; Wang P. H. (1999.): Shape selectivity of trace by-products for supercritical water oxidation of 2-chlorophenol effected by CuO/ZSM-48. Applied Catalysis B: Environmental 22, 261–267.

 

Liotta L.F.; Gruttadauriab M.; Di Carloc G.; Perrini G.; Librandod V. (2009.): Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity. Journal of Hazardous Materials, 162, 588–606.

 

Liu Lili; Ma WanHong; Song WenJing; Chen ChunCheng; Lin Jun; Zhao JinCai; Qian XinHua,; Zhang ShiBo (2007.): Zeolite NaY-mediated oxidation of dyes with H2O2: unique heterogeneous non-transition metal center cleavage of H2O2 under visible light irradiation. Science in China Series B: Chemistry, 50, 770-775.

 

Maduna Valkaj K.; Katović A.; Zrnčević S. (2007.): Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM–5 catalyst. Journal of Hazardous Materials, 144, 663-667.

 

Maduna Valkaj K.; Katović A.; Zrnčević S. (2011.): Catalytic properties of Cu/13X zeolite based catalyst in catalytic wet peroxide oxidation of phenol. Industtrial Engineering Chemistry Research, 50, 4390–4397.

 

Maduna Valkaj K.; Kaselj I.; Smolković J.; Zrnčević S.; Kumarb N.; Murzin D. Yu. (2015.): Catalytic wet peroxide oxidation of olive oil mill wastewater over zeolite based catalyst. Chemical Engineering Transaction, 43, 1-6.

 

Massa P.; Ivorra F.; Haure P.; Fenoglio R. (2011.): Catalytic wet peroxide oxidation of phenol solutions over CuO/ CeO2 systems. Journal of Hazardous Materials, 190, 1068-1073.

 

Merchant Research & Consulting, Ltd., http://mcgroup.co.uk/news/20140131/global-phenol-supply-exceed-107-mln-tonnes.html

 

Mohammadi S.; Kargari A.; Sanaeepur H.; Abbassian K.; Najafi A.; Mofarrah E. (2015.): Phenol removal from industrial wastewaters: a short review. Desalination and Water Treatment, 53, 2215-2234.

 

Molina R.; Martinez F.; Melero J.A.; Bremner D.H.; Chakinala A.G. (2006.): Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process: Multivariate study by factorial design of experiments. Applied Catalysis B: Environmental, 66, 198–207.

 

Munthali M.W.; Elsheikh M.A.; Johan E.; Matsue N. (2014.): Proton adsorption selectivity of zeolites in aqueous media: Effect of Si/Al ratio of zeolites. Molecules, 19, 20468-20481.

 

Muraoka K.; Chaikittisilp W.; Okubo T (2016.): Energy analysis of aluminosilicate zeolites with comprehensive Rrnges of framework topologies, chemical compositions, and aluminum distributions. Journal of American Chemical Society, 138 6184–6193.

 

Narodne novine, broj 137/08: Uredba o opasnim tvarima u vodama, http://narodne-novine.nn.hr/clanci/sluzbeni/2013_06_80_1681.html?

 

Öhman L.O.; Ganemi B.; Björnbom E.; Rahkama K.; Keiski R.L.; Paul J. (2002.): Catalyst preparation through ionexchange of zeolite Cu-, Ni-, Pd-, CuNi- and CuPd-ZSM-5. Materials Chemistry and Physics, 73, 263–267.

 

Padilla-Sanchez J.A.; Plaza-Bolanos P.; Romero-Gonzalez R.; Barco-Bonilla, N.; Martinez-Vidal J.L.; Garrido-Frenich A. (2011.): Simultaneous analysis of chlorophenols, alkylphenols, nitrophenols and cresols in wastewater effluents, using solid phase extraction and further determination by gas chromatography–tandem mass spectrometry. Talanta, 85, 2397–2404.

 

Peng J.F.; Liu J.F.; Hu X.L.; Jiang G.B. (2007.): Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with highperformance liquid chromatography. Journal of Chromatography A, 1139, 165–170.

 

Pinto R. T. P.; Lintomen L.; Luz L. F. L.; Jr, Wolf-Maciel M.R. (2005.): Strategies for recovering phenol from wastewater: Thermodynamic evaluation and environmental concerns. Fluid Phase Equilibrium, 228-229, 447–457.

 

Pradeep N.V.; Anupama S.; Navya K.; Shalini H.N.; Idris M.; Hampannavar U.S. (2015.): Biological removal of phenol from wastewaters: a mini review. Applied Water Science, 5, 105–112.

 

Rokhina, E. V.; Virkutyte J. (2011.): Environmental application of catalytic processes: Heterogeneous liquid phase oxidation of phenol with hydrogen peroxide. Critical Reviews in Environmental Science and Technology, 41, 125-167.

 

Sanabria N.R.; Molina R. S. (2012.): Development of pillared clays for wet hydrogen peroxide oxidation of phenol and its application in the posttreatment of coffee wastewater. International Journal of Photoenergy, 1-17.

 

Santos A.; Yustos P.; Quintanilla A.; Ruiz G.; Garcia-Ochoa F. (2005.): Study of the copper leaching in the wet oxidation of phenol with CuO-based catalysts: Causes and effects. Applied Catalysis B: Environmental, 61, 323-333.

 

Santos A.; Yustos P.; Quinta nilla A.; Rodriguez S.; Garcia-Ochoa F. (2002.): Route of the catalytic oxidation of phenol in aqueous phase. Applied Catalysis B: Environmental, 39, 97-113.

 

Seo S.M.; Lim W.T.; Seff K. (2012.): Crystallographic verification that copper(II) coordinates to four of the oxygen Atoms of zeolite 6-rings. Two single-crystal structures of fully dehydrated, largely Cu2+- exchanged zeolite Y (FAU, Si/Al = 1.56). Journal of Physical Chemistry C, 116, 963–974.

 

Sklenak S.; Andrikopoulos P.C.; Whittleton S.R.; Jirglova H.; Sazama P.; Benco L.; Bucko T.; Hafner J.; Sobalik Z. (2013.): Effect of the Al siting on the structure of Co(II) and Cu(II) cationic sites in ferrierite. A periodic DFT molecular dynamics and FTIR study. The Journal of Physical Chemistry, 117, 3958-3968

 

Smeets P.J.; Woertink J.S. ; Sels B.F.; Solomon E.I.; Schoonheydt R.A. (2011.): Transition metal ions in zeolites: Coordination and activation of O2. Inorganic Chemistry, 49, 3573-3583.

 

Stavropoulos G.G.; Samaras P.; Sakellaropoulos G. P. (2008.): Effect of activated carbons, modification on porosity, surface structure and phenol adsorption. Journal of Hazardous Materials, 151, 276-284.

 

Subbaramaiah, V.; Srivastava, V. C.; Mall, D. (2013.): Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15. Journal of Hazardous Materials, 248-249, 355-363.

 

Teng T.T.; Soniya M.; Muthuraman G.; Talebi A. (2014.): Role of emulsion liquid membrane (ELM) in separation processes, in Wastewater Engineering: Advanced Wastewater Treatment System, Eds. Aziz H.A., Mojiri A., IJSR Publication, Malaysia, pp. 149-158.

 

The NALCO Water Handbook, McGraw Hill, New York, 2009. Turhan K; Uzman S. (2008.): Removal of phenol from water using ozone. Desalination, 229, 257–263.

 

Urtiaga A.; Abellán M.J.; Irabien J.A., Ortiz I. (2005.): Membrane contactors for the recovery of metallic compounds. Modelling of copper recovery from WPO processes. Journal of Membrane Science, 257, 161-170.

 

Villa, A.L.; Caro, C.A.; Montes de Correa, C. (2005.): Cu- and Fe-ZSM-5 as catalysts for phenol hydroxilation. Journal of Molecular Catalysis A: Chemical, 228, 233-240.

 

Wang J.L.; Xu L.J., (2012.): Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 42, 251–325.

 

Wittine O.; Maduna Valkaj K..; Zrnčević S. (2014.): Obrada fenolne otpadne vode katalitičkim oksidacijskim procesima. Hrvatske vode, 22, 287-296.

 

Yang C. F.; Yu Q.; Zhang L. J.; Feng J.Z. (2006): Solvent extraction process development and on- site trial-plant for phenol removal from industrial coal-gasification wastewater. Chemical Engineering Journal, 117, 179–185.

 

Zazo J.A.; Casas J.A.; Mohedano A.F.; Gilarranz M.A.; Rodiguez J.J. (2005.): Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environmental Science and Technology, 39, 9295–9302.

 

Zhidomirov G.; Shubin A.A.; Larkin A..; Rybakov A.A. (2011.): Molecular models of the stabilization of bivalent metal cations in zeolite catalysts, in book: Practical aspects of computational chemistry I: An overview of the last two decades and current trends, Chapter: 20, Publisher: Springer Netherlands, Eds: Leszczynski J., Shukla M.K., pp. 579-643.ž

 

Zrnčević S.; Gomzi Z. (2005.): CWPO: An environmental solution for pollutant removal from wastewater. Industrial Engineering Chemistry Research, 44, 6110–6114.