Hrvatske vode
 
Katalitička oksidacija otpadnih voda industrije obrade maslina vodikovim peroksidom
Hydrogen peroxide catalytic oxidation of olive oil mill wastewater

Karolina Maduna Valkaj1, Ivona Kaselj2, Sanja Islamović3, Stanka Zrnčević3

Sažetak/Abstract: 

U radu je prikazana mogućnost primjene CWPO procesa za obradu otpadnih voda iz procesa prerade maslina u maslinovo ulje. Istražen je učinak procesnih parametara na aktivnost i stabilnost kalciniranog Cu/13X-K1273 katalitzatora. Reakcija je provođena u šaržnom reaktoru pri različitom broju okretaja miješala (50 - 900 o min-1), različitoj masi katalizatora (5 - 25 g dm-3) i različitoj temperaturi (323 - 353 K). Koncentracije vodikovog peroksida su se kretale od 0,5 do 1,34 mol dm-3, dok je koncentracija ukupnih fenola bila konstantna. Djelotvornost katalizatora praćena je preko konverzije fenola, ukupnog organskog ugljika, kemijske potrošnje kisika te skidanja bakra s nosača. Dobiveni eksperimentalni podatci testirani su sljedećim kinetičkim modelima: rUF=kUF∙(cUF∙cVP)2 za oksidaciju ukupnih fenola i rVP=kVP∙(cVP)2 za raspad vodikovog peroksida. Kinetički parametri procijenjeni su Nelder – Meadovom metodom nelinearnog optimiranja. Izračunate su energije aktivacije koja za reakciju oksidacije fenola i raspad vodikovog peroksida iznose 84,9 kJ mol-1, odnosno 71,4 kJ mol-1. Na osnovi eksperimentalnih podataka može se zaključiti da je CWPO proces obećavajuća tehnologija za pročišćavanje otpadnih voda iz procesa proizvodnje maslinovog ulja, budući se fenolni spojevi pri blagim reakcijskim uvjetima vrlo lako oksidiraju u manje toksične međuprodukte reakcije te se postiže značajno uklanjanje boje, mutnoće, mirisa i organskih pokazatelja djelotvornosti procesa za obradu OOMW-a.

 

The paper describes the possible application of the CWPO process to wastewater treatment from the process of olive oil production. The impact of process parameters on the activity and stability of Cu/13X-K1273 catalyst was examined. The reaction took place in a batch reactor at different rpm of the mixer (50 - 900 o min-1), different catalyst mass (5 - 25 g dm-3) and different temperature (323 - 353 K). Hydrogen peroxide concentrations ranged from 0.5 to 1.34 mol dm-3, while the total phenol concentration was constant. The catalyst efficiency was monitored through phenol conversion, total organic carbon, chemical oxygen demand and copper removal from the mount. The obtained experimental data were tested with the following kinetic models: rUF=kUF∙(cUF∙cVP)2 for oxidation of total phenols and rVP=kVP∙(cVP)2 for decomposition of hydrogen peroxide. Kinetic parameters were estimated by means of the Nelder – Mead method of non-linear optimization. The calculated activation energies for the reaction of phenol oxidation and decomposition of hydrogen peroxide equal 84.9 kJ mol-1 and 71.4 kJ mol-1, respectively. Based on experimental data it can be concluded that the CWPO process is a promising treatment technology for olive oil mill wastewater, since the phenol compounds at mild reaction conditions oxidise very easily into less toxic intermediate products of the reaction and thus achieve a significant removal of colour, turbidity, odour and organic indicators of the efficiency of the OOMW treatment process.

Kategorija: 
Izvorni (originalni) znanstveni članak / Original Scientific Paper
Ključne riječi/Key words: 

OOMW, obrada vode, CWPO, kinetička analiza

olive oil mill wastewater (OOMW), water treatment, catalytic wet peroxide oxidation (CWPO), kinetic analysis

Podaci o autorima/Authors affiliations: 

1Fakultet Åbo Akademi University, Department of Chemical Engineering, Turku, Finland

 

2Alphachrom, d.o.o., Karlovačka cesta 24, Blato, Zagreb

 

3Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu, Marulićev trg 19, Zagreb, szrnce@fkit.hr

Literatura/References: 

Achak M.; Hafidi A; Mandi L.; Ouazzani N. (2014.): Removal of phenolic compounds from olive mill wastewater by adsorption onto wheat bran. Desalination and Water Treatment, 52, 2875-2885.

 

Adhoum N.; Monser L. (2004.): Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation. Chemical Engineering and Processing, 43, 1281–1287.

 

Andreozzi R.; Caprio V.; Insola A.; Marotta R.; Sanchirico R. (2000.): Advanced oxidation processes for the treatment of mineral oil-contaminated wastewaters. Water Research,34, 620 – 628.

 

Azabara N.; Bayram A.; Filibeli A.; Muezzinoglu A.; Sengul F.; Ozer, A. (2004.): A Review of waste management options in olive oil production. Critical Reviews in Environmental Science and Technology, 34, 209-247.

 

Azabou S.; Najjar W.; Bouaziz M.; Ghorbel A.; Sayadi S. (2010.): A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques. Journal of Hazardous Materials, 183, 62-69.

 

Belaid C.; Khadraoui M.; Mseddii S.; Kallel M.; Elleuch B.; Fauvarque J. F. (2013.): Electrochemical treatment of olive mill wastewater treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools, Journal of Environmental Science (China), 25, 220-230.

 

Blainski A.; Lopes G.C.; Palazzo de Mello J. C. (2013): Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium Brasiliense L., Molecules, 18, 6852-6865.

 

Bouknana D.; Hammoutia B.; Salghid R.; Jodehe S.; Zarrouka A.; Warade I.; Aounitia A.; Sbaa M. (2014): Physicochemical Characterization of Olive Oil Mill Wastewaters in the eastern region of Morocco. Journal of Materials and Environmental Science, 5, 1039-1058.

 

Cañizares P.; Lobato J.; Paz R.; Rodrigo M. A.; Sáez C. (2007.): Advanced oxidation processes for the treatment of oliveoil mills wastewater. Chemosphere, 67, 832-838.

 

Chen A.; Ma X.; Sun H. (2008.): Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites. Journal of Hazardous Materials, 156, 568-575.

 

Coskun T.; Debik E.; Manav Demir N. (2010.): Treatment of olive mill wastewaters by nanofiltration and reverse osmosis membranes. Desalination, 259, 65-70.

 

Doocey D. J.; Sharratt N.; Cundy S.; Plaisted R. J.(2004.): Zeolite-mediated advanced oxidation of model chlorinated phenolic aqueous waste Part 2: Solid Phase Catalysis. Process Safety and Environmental Protection, 82, 359–364.

 

Ehaliotis C.; Papadopoulou K.; Kotsou M.; Mari I.; Balis C. (1999.): Adaptation and population dynamics of

Azotobacter vinelandii during aerobic biological treatment of olive-mill wastewater. FEMS Microbiology Ecology 30, 301–311.

 

El-Gohary F. A.; Badawy M. I.; El-Khateeb M. A.; El-Kalliny A. S. (2009.): Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton’s reaction and anaerobic treatment. Journal of Hazardous Materials, 162, 1536-1541.

 

Fathima N. N.; Aravindhan R.; Rao J. R.; Nair B. U. (2008.): Dye house wastewater treatment through advanced oxidation process using Cu-exchanged Y zeolite: a heterogeneous catalytic approach. Chemosphere, 70, 1146-1151.

 

Fortuny A.; Font J.; Fabregat A. (1999.): Wet air oxidation of phenol using active carbon as catalyst. Applied Catalyst B, 19, 165-173.

 

Gonzalez-Olmos R.; Roland U.; Toufar H.; Kopinke F. D.; Georgi A. (2009.): Fe-zeolites as catalysts for chemical oxidation of MTBE in water with H2O2. Applied Catalysis B: Environmental, 89, 356-364.

 

Granato T.; Katović A.; Maduna Valkaj K.; Zrnčević S (2008.): Zeolite based ceramics as catalysts for WHPCO of phenol and poly-phenols. Studies in surface science and catalysis 174 Part B, 1171-1175.

 

Inglezakis V. J.; Moreno J. L.; Doula M. (2012.): Olive oil waste management EU legislation: Current situation and policy recommendations. International Journal of Chemical and Environmental Engineering Systems, 3, 65-77.

 

Jaouani A.; Vanthournhout M.; Penninckx M. J. (2005.): Olive oil mill wastewater purification by combination of coagulation- flocculation and biological treatments. Environmental Technology, 26, 633-641.

 

Kiliç M. Y.; Yonar T.; Kestioğlu K. (2013.): Pilot-scale treatment of olive oil mill wastewater by physicochemical and advanced oxidation processes. Environmental Technology, 34, 1521-1531.

 

Kolaczkowski S. T.; Beltran F. J.; McLurgh D. B.; Rivas F. J. (1997.): Wet air oxidation of phenol: factors that may influence global kinetics. Transaction IChemE B, 75, 257–265.

 

Liotta L.F.; Gruttadauria M.; Di Carlo G.; Perrini G.; Librando V. (2009.): Heterogeneous catalytic degradation oh phenolic substrates: Catalysts activity. Journal of Hazardous Materials, 162, 588-606.

 

Lucas M. S.; Peres J. A. (2009.): Removal of COD from olive mill wastewater by Fenton’s reagent: Kinetic study. Journal of Hazardous Materials, 168, 1253-1259.

 

Maduna Valkaj K.; Wittine O.; Zrnčević S. (2008.): Catalytic wet peroxide oxidation of phenol over copper containing zeolites, Procidings of the First Croatian Symposium on Zeolites (ed. by J.Bronić et al.), 241-245, Zagreb.

 

Maduna Valkaj K.; Katović A.; Zrnčević S. (2011.): Catalytic properties of Cu/13X zeolite based catalyst in catalytic wet peroxide oxidation of phenol. Industrial & Engineering Chemistry Research, 50, 4390-4397.

 

Maduna Valkaj K.; Polak I.; Islamović S.; Husanović D.; Zrnčević S. (2014.a.): Catalytic wet peroxide oxidation of olive oil mill wastewater over copper bearing zeolite based catalysts. 12th International Chemical and Biological Engineering Conference (ed. by A. Alves et al.), 1-3, Porto.

 

Maduna Valkaj K.; Wittine O.; Katović A.; Zrncević S. (2014.b.): Catalytic oxidation of olive mill wastewater. International Conference on Civil, Biological and Environmental Engineering (ed.by B.Topcuoglu), 83-86, Istanbul.

 

Michael I.; Panagi A.; Ioannou L. A.; Frontistis Z.; Fatta-Kassinos D. (2014.): Utilizing solar energy for the purification of olive mill wastewater using a pilot-scale photocatalytic reactor after coagulation-flocculation. Water Research, 60, 28-40.

 

Narajja W.; Azabou S.; Sayadi S.; Ghorbel A. (2009.): Screening of Fe-BEA catalysts for wet hydrogen peroxide oxidation of crude olive mill wastewater under mild conditions. Applied Catalysis B: Environmental, 88, 299-304.

 

Nassara N. N.; Arab L. A.; Mareia N. N.; Abu Ghanimb M. M.; Dwekatb M. S.; Sawalhab S. H. (2014.): Treatment of olive mill based wastewater by means of magnetic nanoparticles: Decolourization, dephenolization and COD removal. Environmental Nanotechnology, Monitoring & Management, 1–2, 14–23.

 

Paraskeva P.; Diamadopoulos E. (2006.): Technologies for olive mill wastewater (OMW) treatment: a review. Journal of Chemical Technology and Biotechnology, 81, 1475-1485.

 

Paraskeva C. A.; Kanellopoulou D. G.; Tsarouchi E.; Koutsoukos P. G.; Papadakis V. G. (2007.): Membrane processing for olive mill wastewater fractionation. Desalination, 213, 218-229.

 

Pelendridou K.; Michailides M. K.; Zagklis D. P.; Tekerlekopoulou A. G.; Paraskeva C. A.; Vayenas D. V. (2014.): Treatment of olive mill wastewater using a coagulation–flocculation process either as a single step or as post-treatment after aerobic biological treatment. Journal of Chemical Technology and Biotechnology, 89, 1866-1874.

 

Pera-Titus M.; García-Molina V.; Baños M.; Giméneza J.; Espulgas S. (2004.): Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47, 219 -256.

 

Rivas F.J.; Kolaczkowski S. T.; Beltran F. J.; McLurgh D. B. (1999.): Hydrogen peroxide promoted wet air oxidation of phenol: influence of operating conditions and homogeneous metal catalysts. Journal of Chemical Technology and Biotechnology, 74, 390–398.

 

Salman M.; Abu-Khalaf N.; Abu Rumaileh B.; Jawabreh M.; Abuamsha R. (2014.): Detoxification of olive mill wastewater using the white rot fungus Phanerochaete chrysosporium. International Journal of Environment and sustainability, 3, 1-6.

 

Santos A.; Yustos P.; Quintanilla A.; Rodriguez S.; Garcia-Ochoa F. (2009.): Rute of the catalytic oxidation of phenol in aqueous phase. Applied Catalysis B: Environmental, 39, 97-113.

 

Subbaramaiah V.; Srivastava V. C.; Mall D. (2013.): Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15. Journal of Hazardous Materials, 248-249, 355-363.

 

Tsagaraki E.; Lazarides H.N.; Petros K. B. (2007.): Olive mill wastewater treatment. Utilization of By-Products and Treatment of Waste in the Food Industry, 3, 133-157.

 

Una U. T.; Altay U.; Koparal A. S.; Ogutveren U. B. (2008.): Complete treatment of olive mill wastewaters by electrooxidation. Chemical Engineering Journal, 139, 445-452.

 

Zrnčević S.; Gomzi, Z. (2005.): CWPO: An environmental solution for pollutant removal from wastewater. Industrial & Engineering Chemistry Research, 44, 6110–6114.