Hrvatske vode
 
Obrada otpadnih voda iz proizvodnje tiskanih pločica pomoću crvenog mulja i ozona
Treatment of wastewater generated in the printed circuit bord production with red mud and ozone

Višnja Oreščanin1

Sažetak/Abstract: 

U radu je prikazana nova metoda obrade otpadne vode koja nastaje u procesu proizvodnje tiskanih pločica korištenjem crvenog mulja - otpadnog produkta iz proizvodnje glinice. Izvršena je karakterizacija otpadne vode i crvenog mulja te su utvrđeni optimalni uvjeti uklanjanja ključnih pokazatelja iz otpadne vode. Otpadna voda je karakterizirana niskom pH vrijednošću (2,11), visokom vodljivošću (70,11 mS/cm), visokim vrijednostima bakra (4190 mg/L) i željeza (2660 mg/L) te povišenim organskim opterećenjem (KPK = 432 mg/L), dok je kod crvenog mulja utvrđena relativno visoka pH vrijednost (9,98) te visok udio željeza (22,16 %) i aluminija (8,86 %). Dominantne mineralne faze crvenog mulja su hematit, kalcit i bemit. Obzirom na visok neutralizacijski i sorpcijski kapacitet crvenog mulja, njegovo miješanje s otpadnom vodom u optimalnim omjerima dovodi do neutralizacije oba otpadna produkta te uklanjanja teških metala iz otpadne vode ispod graničnih vrijednosti. Pri optimalnim uvjetima uklanjanja (pH = 8; kontaktno vrijeme = 20 minuta; T = 25ºC) uklonjeno je više od 99,99 % bakra i željeza, 89,14 % ukupne otopljene tvari, dok je posredstvom ozona uklonjeno 83,56 % KPK. Stupanj uklanjanja anorganskih pokazatelja raste s porastom pH vrijednosti i kontaktnog vremena, dok su niska temperatura (10ºC), niska pH vrijednost (3-4) te što dulje kontaktno vrijeme optimalni uvjeti za uklanjanje organske tvari.

 

The paper presents a new method of wastewater treatment generated in the manufacturing process of printed circuit boards by utilization of red mud - a waste product from alumina production. Wastewater and red mud were characterised and optimal conditions for key indicators removal from wastewater were determined. The wastewater is characterized by a low pH value (2.11), high conductivity (70.11 mS/cm), high copper (4190 mg/L) and iron (2660 mg/L) values and elevated organic load (COD = 432 mg/L). The red mud has a relatively high pH value (9.98) and high percentages of iron (22.16 %) and aluminium (8.86 %). The dominant mineral phases of red mud are hematite, calcite and boehmit. Considering its high neutralisation and sorption capacity, red mud mixed with wastewater in optimal ratios leads to neutralisation of waste products and removal of heavy metals from wastewater to below the limit values. In optimal removal conditions (pH = 8; contact time = 20 minutes; T = 25°C), more than 99.99 % copper and iron and 89.14 % total dissolved matter are removed, including 83.56 % COD removal with ozone. The removal rates of inorganic indicators increase with increased pH values and contact time, whereas low temperature (10°C), low pH value (3-4) and the longest possible contact time present optimal conditions for removal of inorganic matter.

Kategorija: 
Izvorni (originalni) znanstveni članak / Original Scientific Paper
Ključne riječi/Key words: 

tiskane pločice, otpadna voda, crveni mulj, bakar, željezo, KPK, ozonizacija

printed circuit boards, wastewater, red mud, copper, iron, COD, ozonation

Podaci o autorima/Authors affiliations: 

1OREŠČANIN, j.d.o.o., Ante Jakšića 30, 10000 Zagreb, vorescanin@gmail.com

Literatura/References: 

Altundogan H.S., Altundogan S., Tumen F., Bildik, M. (2000.): Arsenic removal from aqueous solutions by adsorption on red mud. Waste Management, 20, 761-767.

 

Akay G., Keskinler B., Cakici A., Danis, U. (1998.): Phosphate removal from water by red mud using crossflow microfiltration. Water Research, 32, 717-726.

 

Apak R., Atun G., Guclu K., Tutem E., Keskin, G. (1995.): Sorptive removal of cesium-137 and strontium-90 from water by unconventional sorbents usage of bauxite wastes (red muds). Journal of Nucllear Science & Technology, 32, 1008-1017.

 

Apak R., Guclu K., Turgut, M.H. (1998.): Modeling of copper (II), cadmium (II), and lead (II) adsorption on red mud. Journal of Colloid Interface Science, 203,122-130.

 

Atun G., Hisarli, G. (2000.): A study of surface properties of red mud by potentiometric method. Journal of Colloid Interface Science, 228, 40-45.

 

Barbarić-Mikočević Z., Oreščanin V., Bolanča Z., Lulić S., Rožić, M. (2004.): Heavy metals in the products of deinking flotation of digital offset prints. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering, 39 (1-12), 2883-2895.

 

Burkov K.A., Karavan S.V., Pinchuk, O.A. (2012.): Russian Journal of Applied Chemistry, 85 (12), 1838-1844.

 

Chen S.S., Hsu H.D., Lin Y.J., Chin, P.Y. (2008.): Removal of EDTA from low pH printed-circuit board wastewater in a fluidized zero valent iron reactor. Water Science & Technolagy, 58 (3), 661-667.

 

Fouad O.A., Abdel Basir, S.M. (2005.): Cementation-induced recovery of self-assembled ultrafine copper powders from spent etching solutions of printed circuit boards. Powder Technology, 159 (3), 127-134.

 

Haas C.N., Tare, V. (1984.): Application of ion exchangers to recovery of metals from semiconductor wastes. Reactive Polymers, Ion Exchangers, Sorbents, 2 (1–2), 61-70.

 

Hadi P., Gao P., Barford JP., McKay, G. (2013.): Novel application of the nonmetallic fraction of the recycled printed circuit boards as a toxic heavy metal adsorbent. Journal of hazardous materials, 252–253, 166–170.

 

He M., Liang Z., LI, H. (2008.): Treatment of complex wastewater from printed circuit board processing by internal electrolysis with iron filings. Technology of Water Treatment, 6, 23-31.

 

Huang Z., Xie F., Ma, Y. (2011.): Ultrasonic recovery of copper and iron through the simultaneous utilization of printed circuit boards (PCB) spent acid etching solution and PCB waste sludge. Journal of Hazardous Materials, 185 (1), 155-161.

 

Jun-hui Z., Hang, M. (2009.): Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area. Journal of hazardous materials, 165 (1–3), 744–750.

 

Koumanova B., Drame M., Popangelova, M. (1997.): Phosphate removal from aqueous solutions using red mud wasted in bauxite Bayers process. Resources Conservation Recycling, 19, 11-20.

 

LaDou, J. (2006.): Printed circuit board industry. International Journal of Hygiene and Environmental Health, 209 (3), 211–219.

 

Lee M-S., Ahn J-G., Ahn, J-W. (2003.): Recovery of copper, tin and lead from the spent nitric etching solutions of printed circuit board and regeneration of the etching solution. Hydrometallurgy, 70 (1-3), 23-29.

 

Leung A., Cai ZW., Wong, MH. (2006.): Environmental contamination from electronic waste recycling at Guiyu, southeast China. Journal of Material Cycles and Waste Management, 8, 21-33.

 

Lopez E., Soto B., Arias M., Nunez A., Rubinos D., Barel, M.T. (1997.): Adsorbent property of red mud and its use for waste water treatment. Water Research, 32, 1314-1322.

 

Lou J-C., Huang Y-J., Han, J-Y. (2009.): Treatment of printed circuit board industrial wastewater by Ferrite process combined with Fenton method. Journal of Hazardous Materials, 170 (2-3), 620-626.

 

Namasivayam C., Arasi, D.J.S.E. (1998.): Removal of congo red from wastewater by adsorption onto waste red mud. Chemosphere. 34, 401-417.

 

Namasivayam C., Thamaraiselvi, K. (1998.): Adsorption of 2-chlorophenol by waste red mud. Fresenius Environmental Bulletin, 7, 314-319.

 

Oreščanin V., Nađ K., Valković V., Mikulić N., Meštrović, O. (2001.): Red mud and waste base: raw materials for coagulant production. Journal of Trace Microprobe Techniques, 19 (3), 419-428.

 

Oreščanin V., Tibljaš D., Valković, V. (2002.): A study of coagulant production from red mud and its use for heavy metals removal. Journal of Trace Microprobe Techniques, 20(2), 233-245.

 

Oreščanin, V. (2003.): Mineraloška, kemijska i toksikološka svojstva koagulanta proizvedenog korištenjem crvenog mulja i otpadne lužine kao sirovina. Doktorska disertacija. Sveučilište u Zagrebu, Prirodoslovno matematički fakultet, 129 str.

 

Oreščanin V., Durgo K., Franekić Čolić J., Nađ K., Valković, V. (2003 a.): Physical, chemical, and genotoxic properties of waste mud by-product of waste water treatment. Journal of Trace Microprobe Techniques, 21 (1), 123-132.

 

Oreščanin V., Nađ K., Kukec L., Gajski A., Sudac, D., Valković, V. (2003 b.): Trace element analysis of water and sediment before/after passing a waste water treatment plant. Journal of Trace Microprobe Techniques, 21 (2), 325-334.

 

Oreščanin V., Nađ K., Mikelić L., Mikulić N., Lulić, S. (2006.): Utilization of Bauxite Slag for the Purification of Industrial Waste Waters. Process Safety and Environmental Protection - Part B, 84 (B4), 265-269.

 

Oreščanin V., Lovrenčić I., Mikelić L., Lulić, S. (2008.): Applicability of MiniPal 4 compact EDXRF spectrometer for soil and sediment analysis. X-ray spectrometry. 37 (5), 508-511.

 

Oreščanin V., Kollar R., Nađ, K. (2011.): The electrocoagulation/advanced oxidation treatment of the groundwater used for human consumption. Journal of Environmental Science and Health, Part A. Toxic / Hazardous Substances and Environmental Engineering, 46 (14), 1611-1618.

 

Oreščanin V., Kollar R., Nađ K., Lovrenčić Mikelić I., Findri Guštek, Š. (2013.): Treatment of winery wastewater by electrochemical methods and advanced oxidation processes. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering, 48(12), 1543 – 1547.

 

Oreščanin V., Kollar R., Halkijević, I., Kuspilić M., Flegar, V. (2014.): Neutralization/purification of the wastewaters from the printed circuit boards production using waste byproducts. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering, 49 (5), 540-544.

 

Oreščanin, V. (2014.): Inertizacija zagađenih sedimenata različitim kemijskim metodama. Hrvatske vode, 22 (89), 227-238.

 

Pigaga A., Selskis A., Pakštas V., Butkienė R., Juškėnas, R. (2005.): Simultaneous decontamination of two copper ligand-containing solutions by mixing and precipitation. Hydrometallurgy, 79 (3–4), 89-96.

 

Pradhan J., Das S. N., Thakur, R. S. (1999.): Adsorption of hexavalent chromium from aqueous solution by using activated red mud. Journal of Colloid Interface Science, 217,137-141.

 

Pravilnik o načinima i uvjetima odlaganja otpada, kategorijama i uvjetima rada za odlagališta otpada. Narodne novine br. 117/07, 111/11, 17/13, 62/13.

 

Scott K., Chen X., Atkinson J.W., Todd M., Armstrong, R. D. (1997.): Electrochemical recycling of tin, lead and copper from stripping solution in the manufacture of circuit boards. Resources, Conservation Recycling, 20 (1), 43-55.

 

Sutar H., Mishra SC., Sahoo, SK. Progress of Red Mud Utilization: An Overview. Chakraverty AP., Maharana, HS. (2014.): American Chemical Science Journal, 4 (3): 255-279.

 

Uredba o graničnim vrijednostima emisija otpadnih voda. Narodne novine br. 80/13.

 

Zouboulis, A. I., Kydros, K. A. (1993.): Use of red mud for toxic metals removal-the case of nickel. Journal of Chemical Technology & Biotechnology, 58, 95-101.