Hrvatske vode
 
Utjecaj kanalskih propusta na izmjenu mora i valovanje u akvatoriju marina
The impact of culverts on the seawater exchange and wave action in marina waters

Goran Lončar1, Damir Bekić1, Dalibor Carević1, Damjan Bujak1, Ivana Bartolić2, Gordana Beg Plakar3

Sažetak/Abstract: 

Prikazani su rezultati provedenih numeričkih simulacija cirkulacije i valne dinamike akvatorija marine koja u glavnom lukobranu ima izveden kanalski propust na četiri varijantne pozicije. Analizirana je hipotetska marina duljine 300 m, širine 150 m, širina ulaza 25 m, varijabilne dubine od 3 do 7 m. Varirane su pozicije (4 pozicije) i širine kanalskog propusta (5 m i 10 m) u lukobranu te kote dna (-1 m, -2 m, -3 m, -5 m, dno marine) marine. Model cirkulacije i izmjene mora je forsiran djelovanjem vjetra (smjerovi N, NE, E, SE, S, SW, W, NW) s hipotetskom raspodjelom brzina (linearni prirast od 0 do 5 Bf i linearni pad od 5 Bf do 0) i plimnim oscilacijama tijekom simulacijskog razdoblja od 24 h. Analizirana je transmisija energije vjetrovnih valova kroz kanalski propust za valne visine H = 0.6 m, 1.0 m i 1.5 m i pripadne valne periode T = 3,1 s, 4.0 s i 4.9 s ispred lukobrana. Prikazani rezultati omogućuju izbor pozicije i geometrije kanalskog propusta za postizanje maksimalne izmjene mora uz postavljeni uvjet dopuštene valne pobude. Na primjeru Marine Zadar prezentirana je praktična primjena dobivenih rezultata.

 

The paper presents the results of the conducted numerical simulations of circulation and wave dynamics in the marine waters whose main pier contains a constructed culvert in four variant positions. A hypothetical marina with a length of 300 m, width of 150 m, entrance width of 25 m and variable depths from 3 to 7 m was analysed. The culvert positions (4) and widths (5m and 10m) in the pier were varied as well as the seabed elevations (-1 m, -2 m, -3 m, -5 m, marina seabed) of the marina. The model of seawater circulation and exchange was forced by wind action (of N, NE, E, SE, S, SW, W, NW directions) with a hypothetical distribution of velocities (linear increase from 0 to 5 Bf and linear decrease from 5 Bf to 0) and tidal oscillations during the 24-hour simulation period. The transmission of wind wave energy through the culvert was analysed for the wave heights H = 0.6 m, 1.0 m and 1.5 m and associated wave periods T = 3.1 s, 4.0 s and 4.9 before the pier. The presented results facilitate such selection of the position and geometry of the culvert as to achieve the maximal seawater exchange with the set condition of the permitted wave disturbance. The practical application of the obtained results was presented on the example of the Zadar marina.

Kategorija: 
Prethodno priopćenje / Preliminary Report
Ključne riječi/Key words: 

kanalski propust, marina, Jadran, numerički model

culvert, marina, Adriatic Sea, numerical model

Podaci o autorima/Authors affiliations: 

1Sveučilište Građevinski fakultet Sveučilišta u Zagrebu, Kačićeva 26, Zagreb, gloncar@grad.hr

 

2Tehničko veleučilište u Zagrebu, Avenija Većeslava Holjevca 15, Zagreb

 

3Institut za oceanografiju i ribarstvo, Šetalište I. Meštrovića 63, Split

Literatura/References: 

Babić, A.; Andročec, V.; Lončar, G.; Carević, D. (2016.): The impact of the culverts on sea water exchange in the marinas, Annual 2015 of the Croatian Academy of Engineering, 20, str. 27-39.

 

Balas, L.; Inan, A. (2010.): Modelling of Induced Circulation, WSEAS Transactions on Fluid Mechanics, 5(3), str. 132-143.

 

Berkhoff. J.C.W. (1972.): Computation of combined refractiondiffraction, Proc. 13th Coastal Eng.Conf., Vancouver 1972, ASCE. New York, Vol. 1, Chap. 24, 471-490.

 

Booij, N. (1983.): A note on the accuracy of mild-slope equation, Coastal Engineering, 7, 191-203.

 

Carević, D.; Lončar, G.; Kuspilić, N. (2014.): Tehničko ekonomski parametri marina u Hrvatskoj, Građevinar, 66 (10), str. 909-915.

 

Doss, S.; Miller, K. (1979.): Dynamic ADI methods for elliptic equations, Journal on Numerical Analysis, 16(5), 837-856.

 

Cucco, A.; Umgiesser, G., (2006.): Nodeling the venice lagoon residence time, Ecological modelling, 194, 34-51.

 

Falconer, R.A.; Gouping, Y. (1991.): Effects on depth, bed slope and scaling on tidal currents and exchange in a laboratory model harbor, Proc. Institution civil engineers, Part 2 research & theory, 91, str. 561-576.

 

Fischer, H.B.; List, E.J.; Koh, R.C.Y.; Imberger, J.; Brooks, N.H. (1979.) Mixing in Inland and Coastal Waters, Academic Press, London, 483 str.

 

Fountoulis, G.; Memos, C. (2005.): Optimization of openings for water renewal in a harbor basin, Journal of Marine Environmental Engineering, 7 (4), str. 297–306.

 

Hydroexpert (2005.): Studija vjetrovne i valne klime ispred Luke Zadar – Gaženica, Zagreb, 25 str.

 

Hydroexpert (2012.): Analiza hidrodinamike mora za Luku Opatija – vjetrovalna klima, Zagreb, 27 str.

 

Građevinski fakultet Sveučilišta u Zagrebu (1989.): Izmjena i dopuna projekta za izvođenje pomorskih konstrukcija, Nautičko turistički centar Ičići – marina (2320-30/2A).

 

Janeković, I.; Kuzmić, M. (2005.): Numerical simulation of the Adriatic Sea principal tidal constituents, Ann. Geophys., 23, 3207–3218.

 

Kraljev, D.; Gajić-Čapka, M. (1995.): U okrilju sunca i mora - klimatološka monografija Zadra, Zadiz, Zadar, 67 str.

 

Lončar, G.; Andričević, R.; Petrov, V. (2007.): Numerički modeli zajedničkog rada podmorskih ispusta otpadnih voda, Građevinar, 59 (11), str. 955-965.

 

Lončar, G.; Leder, N.; Paladin, M. (2012.): Periodi vlastitih oscilacija u akvatorijima Bakra, Malog Lošinja, Ista, Starog Grada i Vela Luke, Hrvatske vode, 20 (82), str. 201-210.

 

Madsen, P.A.; Larsen, J. (1987.): An Efficient Finite-Difference Approach to the Mild-Slope Equation, Coastal Engineering, 11, 329-351.

 

Nece, R.A. (1984.): Planform effects on tidal flushing of marinas, Journal of Waterway, Port, Coastal and Ocean Engineering, 110 (2), str. 251-269.

 

Oakey, N. S.; Elliott, J. A. (1982.): Dissipation Within The Surface Mixed Layer, J. Phys. Oceanography, 12, str. 171-185.

 

Ozhan, E.; Tore, E. (1992.): Studies for improving flushing ability of Marmaris marina, Publ. by Comp. Mech. Publ, Southampton, 267 str.

 

Rodi, W. (1987.): Examples of calculation methods for flow and mixing in stratified fluids, Journal of

Geophysical Research, 92(C5), str. 5305-5328.

 

Schwartz, R.A. (1989.): Flushing behavior of a coastal marina, 21rd Coastal Engineering Conference, Malaga, Spain, str. 2626-2640.

 

Smagorinsky, J. (1993.): Some historical remarks on the use of nonlinear viscosities, In: Large eddy simulations of complex engineering and geophysical flows, B. Galperin and S. Orszag (eds.), Cambridge University Press, str. 1-34.

 

Stagonas, D.; Gerald, M.; Magagna, D.; Warbrick, D. (2009.): Fundamental investigation of water flow in harbors through a flushing culvert, 33rd IAHR Congress: Water Engineering for a Sustainable Enviroment, Van Cuver, Canada, str. 7257 – 7265.

 

Stamou A I.; Kapetanaki M.; Christodoulou G.; Rajar R.; Cetina M. (2001.): Mathematical Modeling of Flow and Pollution in Marinas, Proceedings of the 7th Int. Conf. on Environmental Science and Technology, Syros, Greece, str. 830-837.

 

Stamou, A.I.; Katsiris, I.K.; Moutzouris, C.I.; Tsoukala, V.K. (2004.): Improvement of marina design technology using hydrodynamic models, Global Nest journal, 6 (1), str. 63–72.

 

Tsoukala V.K.; Katsardi, V.; Belibassakis, K.A. (2014.): Wave transformation through flushing culverts operating at seawater level in coastal structures, Ocean Engineering, 89, str. 211–229.

 

Tsoukala, V.K.; Moutzouris, C.I. (2003.): Field measurements of marina flushing and dissolved oxygen penetration in a harbor basin through water entrance channels, 3rd Panhellenic Conference of Harbor Works, Athens, Greece, str. 607-619.

 

Tsoukala, V.K.; Moutzouris, C.I. (2005.): Field measurements of dissolved oxygen in the Piraeus Harbor basin, Journal of Marine Environmental Engineering, 7 (4), str. 307-316.

 

Tsoukala, V.K.; Moutzouris, C.I. (2009.): Wave transmission in harbors through flushing culverts, Ocean Engineering, 36, str. 434–445.

 

Tsoukala, V.K.; Gaitanis, C.K.; Stamou, A.I.; Moutzouris, C.I. (2010.): Wave and dissolved oxygen transmission analysis in harbors using flushing culverts: an experimental approach, Global nest journal, 12 (2): str. 152-160.

 

US Army Corps of Engineers (2002.): Coastal Engineering Manual (CEM), EM 1110-2-1100.

 

Weston Solutions, Inc. (2013.): Shelter Island Yacht Basin Tidal Flushing Modeling and Engineering Feasibility Study, Port of San Diego 3165 Pacific Highway San Diego, California, 29 str.

 

Wu, J. (1994.): The sea surface is aerodynamically rough even under light winds, Boundary layer Meteorology, 69, str. 149-158.