Hrvatske vode
 
Analiza dnevnih, mjesečnih i godišnjih oborina Zagreb-Griča (1862.-2017.) za potrebe inženjerske hidrologije
Analysis of daily, monthly and annual precipitation at the Zagreb-Grič observatory (1862 -2017) for purposes of engineering hydrology

Ognjen Bonacci1, Tanja Roje-Bonacci1

Sažetak/Abstract: 

U članku je izvršena analiza dnevnih, mjesečnih i godišnjih količina oborine izmjerenih na opservatoriju Zagreb-Grič u razdoblju od 1862. do 2017. čime je obuhvaćeno: (1) 156 godina; (2) 1872 mjeseca; (3) 56.979 dana. Za analizu su korištene sljedeće metode: (1) linearna i nelinearna regresija; (2) linearna i nelinearna korelacija; (3) krivulje log-normalne raspodjele; (4) test Kolmogorov-Smirnova; (5) Mann-Kendall test; (6) RAPS metoda; (7) t-test; (8) F-test. Godišnje se oborine kreću u rasponu od 520,8 mm (2011.) do 1387,4 mm (1937.) s prosječnom vrijednosti od 886,7 mm. Maksimalne mjesečne oborine koje su se pojavile u svakoj pojedinoj godini kreću se u rasponu od 85,3 mm (lipanj 2011.) do 267,5 mm (listopad 1895.) s prosječnom vrijednosti od 158,1 mm. Maksimalne dnevne oborine koje su se pojavile u svakoj pojedinoj godini kreću se u rasponu od 21,7 mm (14. studenog 1949.) do 118,8 mm (9. kolovoza 1926.) s prosječnom vrijednosti od 47,6 mm. Maksimalnoj dnevnoj oborini od 118,8 mm odgovara povratni period dulji od pet tisuća godina. Ne može se konstatirati prisutnost statistički značajnog trenda porasta ili opadanja kako u nizovima godišnjih tako i mjesečnih (osim u listopadu) kao i maksimalnih dnevnih oborina u godini i mjesecu. Utvrđeno je da samo u listopadu postoji statistički značajna razlika količina oborina u sljedeća dva podrazdoblja: (1) 1862.-1941.; (2) 1942.-2017. U prvom podrazdoblju prosječna mjesečna količina oborina iznosila je 105,1 mm dok je u drugom pala za 29 mm te je iznosila 76,1 mm. Na osnovi analiza izvršenih u ovom radu može se donijeti zaključak da na oborine raznih vremenskih trajanja izmjerene u razdoblju 1862.-2017. na opservatoriju Zagreb-Grič ni klimatske promjene kao ni proces urbanizacije nisu značajno utjecali.

 

The paper conducts the analysis of daily, monthly and annual precipitation quantities measured at the Zagreb-Grič observatory in the period from 1862 to 2017, which comprises of: (1) 156 years; (2) 1,872 moths and (3) 56,979 days. The analysis uses the following methods: (1) the linear and non-linear regression; (2) linear and nonlinear correlation; (3) log-normal distribution curves; (4) Kolmogorov–Smirnov test; (5) Mann-Kendall test; (6) RAPS method; (7) t-test; (8) F-test. The annual precipitation ranges from 520.8 mm (2011) to 1387.4 mm (1937), with an average value of 886.7 mm. The maximum monthly precipitation occurring in each individual year ranges from 85.3 mm (June 2011) to 267.5 mm (October 1895), with the average value of 158.1 mm. The maximum daily precipitation occurring in each individual year ranges from 21.7 mm (14 November 1949) to 118.8 mm (9 August 1926), with the average value of 47.6 mm. The maximum daily precipitation of 118.8 mm equates to a return period of over five thousand years. The presence of a statistically significant upward or downward trend in the annual or monthly (expect in October) precipitation series as well as maximum daily precipitation in a year or a month cannot be confirmed. The presence of a statistically significant difference in the precipitation quantities has been determined only for October, and comprises of two sub-periods: (1) 1862-1941 and (2) 1942-2017. In the first sub-period, the average monthly precipitation quantity equalled 105.1 mm whereas in the second sub-period it decreased by 29 mm and equalled 76.1 mm. According to the analyses conducted in this paper, it can be concluded that the precipitation of different time durations measured in the period from 1862 – 2017 at the Zagreb-Grič observatory showed no significant impact of either the climate change or urbanisation.

Kategorija: 
Pregledni članak / Review Paper
Ključne riječi/Key words: 

oborina, Zagreb-Grič, log-normalna raspodjela, Mann-Kendall test, test Kolmogorov-Smirnova, RAPS metoda

precipitation, Zagreb-Grič, log-normal distribution, Mann-Kendall test, Kolmogorov–Smirnov test, RAPS method

Podaci o autorima/Authors affiliations: 

1Fakultet građevinarstva, arhitekture i geodezije Sveučilišta u Splitu, Matice hrvatske 15, 21000 Split, obonacci@gradst.hr

Literatura/References: 

Adefisan, E.A. (2018.): Climate change impact on rainfall and temperature distributions over West Africa from three IPCC scenarios. Journal of Earth Science & Climatic Change 9(6):1-14.

 

Arnaud, P., Lavabre, J., Fouchier, C., Diss, S., Javelle, P. (2011.): Sensitivity of hydrological models to uncertainty in rainfall input. Hydrological Sciences Journal 56(3):397-410.

 

Bonacci, O. (1994.): Oborine: glavna ulazna veličina u hidrološki ciklus. GEING, Split, str. 341.

 

Bonacci, O., Andrić, I., Roje-Bonacci, T. (2018.): Increasing trends of air temperature in urban area: a case study from four stations in Zagreb City area. Vodoprivreda 50(294-296):203-214.

 

Bonacci, O., Matešan, D. (1999.): Analysis of precipitation appearance in time. Hydrological Processes 13(11):1683-1690.

 

Bonacci, O., Roje-Bonacci, T. (2018.): Analyses of the Zagreb-Grič Observatory air temperatures indices for the period 1881-2017. Acta Hydrotechnica 31(54):67-85.

 

Cindrić, K. (2006.): Statistical analysis of wet and dry spells in Croatia by the binary DARMA (1,1) model. Hrvatski Meteorološki Časopis – Croatian Meteorological Journal. 41:43-51.

 

Cristiano, E., ten Veldhuis, M.-C., van de Giesen, N. (2017.): Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas - a review. Hydrology and Earth System Sciences 21(7):3859-3878.

 

Deal, E., Braun, J., G. Botter, G. (2018.): Understanding the role of rainfall and hydrology in determining fluvial erosion efficiency. JGR: Earth Surface 123(4):744-778.

 

Gajić-Čapka, M. (1982.): Varijabilnost prosječnog oborinskog režima šire zagrebačke regije. Rasprave 17: 23-40.

 

Gajić-Čapka, M. (1991.): Trend of precipitation at the SE edge of the Alps. Proceedings of the 21th lnternational Conference on Carpathian Meteorology, Uzhgorod, USSR. 337-344.

 

Gajić-Čapka, M. (1992.): Stationarity, trend and periodicity of precipitation at the Zagreb-Grič Observatory from 1862 to 1990. Hrvatski Meteorološki Časopis 27:1-10.

 

Gajić-Čapka M. (2012) Klimatske informacije i klimatske promjene za potrebe upravljanja vodama. Hrvatska vodoprivreda, 201, 22-26.

 

Gajić-Čapka M., Cindrić K. (2014): Pojava oborinskih ekstrema s osvrtom na poplave. Hrvatska vodoprivreda, 207, 96-99.

 

Gajić-Čapka M., Čapka, B. (1985.): Analiza ljetnih oborina na području grada Zagreba. Hrvatski Meteorološki Časopis 20:31-40.Garbrecht, J., Fernandez, G.P. (1994.): Visualization of trends and fluctuations in climatic records. Water Resources Bulletin 30(2):297-306.

 

Hamed, K.H., Ramachandra, R. (1998.): A modified Mann-Kendal trend test for autocolerrated data. Journal of Hydrology 204(1-4):182-196.

 

Hamlin, M.J. (1983.): The significance of rainfall in the study of hydrological processes at basin scale. Journal of Hydrology 65(1-3):73-94.

 

Juras, J. (1985.): Neke karakteristike promjene klime Zagreba u posljednjem tri desetljeću. Geofizika 2:93-102.

 

Juras, J., Jurčec, V. (1976.): Statistička analiza sušnih i kišnih razdoblja primjenom modela Markovljevih lanaca. Rasprave i prikazi - Republički hidrometeorološki zavod Socijalističke Republike Hrvatske 13:59-98.

 

Kendall M.G. (1975.): Rank correlation methods, 4th edition. Charles Griffin, London, Great Britain.

 

Mann, H.B. (1945.): Non-parametric test of randomness against trend. Econometrica 13(3):245-259.

 

MZOPUG, 2010: Fifth National Communication of the Republic of Croatia under the United Nation Framework Convention on the Climate Change. Republic of Croatia Ministry of Environmental Protection, Physical Planning and Construction (MZOPUG), Zagreb, pp 215 http://unfccc.int/resource/docs/natc/hrv_nc5.pdf

 

Ogrin, D., Krevs, M. (2015.): Assessing urban heat island impact on long-term trends of air temperatures in Ljubljana. Dela 43:41-59.

 

Pandžić, K., Likso, T. (2010.): Homogeneity of average annual air temperature time series for Croatia.

International Journal of Climatology 30(8):1215-1225.

 

Pandžić, K., Trninić, D., Likso, T., Bošnjak, T. (2009.): Long-term variations in water balance components for Croatia. Theoretical and Applied Climatology 95(1-2):39-51.

 

Pandžić, K. (2016.): Comparing the Palmer Drought Index and the Standardized Precipitation Indeks for Zagreb-Grič Observatory. Abstract EGU General Assembly 2016, Vienna Austria, id. EPSC2016-7340:2992.

 

Penzar, B., Penzar, I., Juras, J., Marki, A. (1992.): Brief review of climatic fluctuations recorded in Zagreb between 1862 and 1990. Geofizika 9(1):57–67.

 

Radić, V., Pasarić, N., Šinik, N. (2004.): Analiza zagrebačkih klimatoloških nizova pomoću empirijski određenih prirodnih sastavnih funkcija. Geofizika 21(1):15-36.

 

Trenberth, K.E. (1999.): Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change 42:327-339.

 

Wood, S.J., Jones, D.A., Moore, R.J. (2000.): Accuracy for rainfall measurement for scales of hydrological interest. Hydrology and Earth System Sciences 4(4):531-543.

 

Zhou, Z., Ouyang, Y., Li, Y., Qiu, Z., Moran, M. (2017.): Estimating impact of rainfall change on hydrological processes in Jianfengling rainforest watershed, China using BASINS-HSPF-CAT modelling system. Ecological Engineering 105:87-94.