Hrvatske vode
 
Biorazgradnja bisfenola A u okolišu
Biodegradation of bisphenol A in the environment

Dajana Kučić Grgić1, Antonija Kovačević1, Ema Lovrinčić1, Vesna Ocelić Bulatović1, Marija Vuković Domanovac1

Sažetak/Abstract: 

Bisfenol A (BPA) je osnovna građevna jedinica u proizvodnji polikarbonata, epoksi smola, stomatoloških potrepština te drugih materijala. BPA dospijeva u okoliš tijekom kemijske proizvodnje, transporta ili prerade te neispravnim odlaganjem proizvoda koji ga sadržavaju. BPA zbog svoje toksičnosti štetno utječe na ljudsko zdravlje, životinjski i biljni svijet te ga je potrebno ukloniti iz okoliša. U ovom je radu provedena biorazgradnja BPA u vodenoj otopini bakterijskim kulturama Pseudomonas aeruginosa BSW, Pseudomonas putida i Streptomyces sp. izoliranim iz okoliša. Pokusima su ispitani različiti čimbenici koji utječu na proces biorazgradnje BPA, poput pH-vrijednosti, temperature i optičke gustoće navedenih kultura. Prema dobivenim rezultatima pri pH-vrijednosti 7 i temperaturi od 35 °C postignuta je najbolja biorazgradnja BPA od 40 %, odnosno 50 % za sva tri ispitana mikroorganizma. Pri optičkoj gustoći od 0,3 postignuta je 10 % veća biorazgradnja BPA nego pri optičkoj gustoći od 0,2 kulturama Pseudomonas aeruginosa BSW i Pseudomonas putida, dok je primjenom kulture Streptomyces sp. najbolja biorazgradnja postignuta pri optičkoj gustoći od 0,2.

 

Bisphenol A (BPA) is the basic building block in the production of polycarbonates, epoxy resins, dental products and other materials. BPA enters the environment during the chemical production, transport, processing or inadequate disposal of the product containing it. Because of its toxicity, BPA has an adverse impact on human health as well as animal and plant life, and has to be removed from the environment. In this paper, the biodegradation of BPA took place in the aqueous solution containing bacterial cultures of Pseudomonas aeruginosa BSW, Pseudomonas putida and Streptomyces sp. isolated from the environment. Various factors affecting the BPA biodegradation process, such as pH value, temperature, and optical density of the mentioned cultures were tested. According to the obtained results, the best BPA biodegradation of 40% i.e. 50% was achieved at pH value of 7 and temperature of 35° C for all three tested microorganisms. At optical density of 0.3, 10% higher BPA biodegradation was achieved with cultures Pseudomonas aeruginosa BSW and Pseudomonas putida than at optical density of 0.2 whereas the use of the culture Streptomyces sp. resulted in the best biodegradation at optical density of 0.2.

Kategorija: 
Izvorni (originalni) znanstveni članak / Original Scientific Paper
Ključne riječi/Key words: 

biorazgradnja, Bisfenol A, Pseudomonas aeruginosa BSW, Pseudomonas putida i Streptomyces sp.

Biodegradation, bisphenol A, Pseudomonas aeruginosa BSW, Pseudomonas putida and Streptomyces sp.

Podaci o autorima/Authors affiliations: 

1Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu, Marulićev trg 19, 10000 Zagreb, d.kucic@fkit.hr

Literatura/References: 

Bertović, B. (2016.): Bioremedijacija zemlje onečišćene naftnim ugljikovodicima. Goriva i maziva, 55(4), 295-305.

 

Chai, W.; Handa, Y.; Suzuki, M.; Saito, M.; Kato, N.; Horiuchi, C.A. (2005.): Biodegradation of bisphenol A by fungi. Applied Biochemistry and Biotechnology, 120, 175–182.

 

de Freitas, E.N.; Bubna, G.A.; Brugnari, T.; Kato, C.G.; Nolli, M.; Rauen, T.G.; de Fatima Peralta Muniz Moreira, R.; Peralta, R.A.; Bracht, A.; de Souza, C.G.M.; Peralta, R.M. (2017.): Removal of bisphenol A and evaluation of ecotoxicity of degradation products by laccases from Pleurotus ostreatus and Pleurotus pulmonarius. Chemical Engineering Journal, 330, 1361-1369

 

Eio, E.J.; Kawai, M.; Tsuchiya, K.; Yamamoto, S.; Toda, T. (2014.): Biodegradation of bisphenol A by bacterial consortia. International Biodeterioration & Biodegradation, 96, 166-173.

 

Flint, S.; Markle, T.; Thompson, S.; Wallace, E. (2012.): Bisphenol A exposure, effects, and policy: A wildlife perspective. Journal of Environment Management, 104, 19–34.

 

Herner, Ž.; Kučić, D.; Zelić, B. (2017.): Biodegradation of imidacloprid by composting process. Chemical Papers 71, 13–20.

 

Kamaraj, M.; Sivaraj, R.; Venckatesh, R. (2014.): Biodegradation of bisphenol A by the tolerant bacterial species isolated from coastal regions of Chennai, Tamil Nadu, India. International Biodeterioration & Biodegradation, 93, 216 - 222.

 

Kang, J.H.; Kondo, F. (2002.a): Bisphenol A degradation by bacteria isolated from river water. Archives of Environmental Contamination and Toxicology 43, 265-269.

 

Kang, J.H.; Kondo, F. (2002.b): Effects of bacterial counts and temperature on the biodegradation of bisphenol A in river water. Chemosphere, 49, 493-498.

 

Kang, J.H.; Ri, N.; Kondo, F. (2004.): Streptomyces sp. strain isolated from river water has high bisphenol A degradability. Letters in Applied Microbiology, 39, 178–180.

 

Kang, J.H.; Katayama, Y.; Kondo, F. (2006.): Biodegradation or metabolism of bisphenol A: From microorganisms to mammal. Toxicology, 217, 81–90.

 

Mandić, D. (2006.): Toksikološke značajke bisfenola A, Osijek.

 

Rykowska, I.; Wasiak, W. (2006.): Properties, Threats, and methods of analysis of bisphenol A and its derivates. Acta chromatographica 16.

 

Sasaki, M.; Maki, J.; Oshiman, K.; Matsumura, Y.; Tsuchido, T. (2005.): Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1. Biodegradation, 16, 449-459.

 

Shin, E.C.; Hyoung T.C.; Hong-Gyu S. (2007.): Biodegradation of endocrine-disrupting bisphenol A by white rot fungus Irpex lacteus. Journal of Microbiology and Biotechnology, 17 (7), 1147 – 1151.

 

Suzuki, K.; Hirai, H.; Murata, H.; Nishida, T. (2003.): Removal of estrogenic activities of 17β-estradiol and ethinylestradiol by ligninolytic enzymes from white rot fungi. Water Resources, 37, 1972–1975.

 

Timkova, I.; Sedlakova-Kadukova, I.; Pristaš, P. (2018.): Biosorption and Bioaccumulation Abilities of Actinomycetes/Streptomycetes Isolated from Metal Contaminated Sites. Separations 54, 1-14.

 

Vijayalakshmi, V.; Senthilkumar, P.; Mophin – Kani, K.; Sivamani, S.; Sivarajasekar, N.; Vasantharaj, S. (2017.): Bio-degradation of bisphenol A by Pseudomonas aeruginosa Pab1 isolated from effluent of thermal paper industry: Kinetic modeling and process optimization. Journal of Radiation Research and Applied Sciences, 1 - 10.

 

Yim, S.H.; Kim, H.J.; Lee, I.S. (2003.): Microbial metabolism of the environmental estrogen bisphenol A. Archives of Pharmacal Research, 10, 805–808.

 

Zhao, J.; Li, Y.; Zhang, C.;Zeng, Q.; Zhou, Q. (2008.): Sorption and degradation of bisphenol A by aerobic activated sludge. Journals of Hazardous Materials, 155, 305-311.