Hrvatske vode
 
Fotodinamički učinak porfirina na legionele
The photodynamic effect of porphyrin on Legionella

Ivona Viduka1, Gabrijela Begić2, Nela Malatesti1, Ivana Gobin2

Sažetak/Abstract: 

Legionella pneumophila je gram-negativna bakterija čije je prirodno stanište voda, uključujući rijeke, jezera i potoke. L. pneumophila je uzročnik pontiačke groznice i legionarske bolesti, a kontaminirani distribucijski sustavi za vodu i ovlaživači zraka samo su neki od izvora infekcije. Unatoč provođenju protuepidemijskih mjera, sve je češća pojava legioneloza, stoga je potrebno razviti nove metode za uklanjanje legionele iz vode. Jedan od pristupa je protumikrobna fotodinamička terapija koja uključuje zajedničko djelovanje fotosenzibilizatora, molekularnog kisika i vidljivog svjetla određene valne duljine u svrhu produkcije singletnog kisika i kisikovih reaktivnih vrsta koji ubijaju mikrobnu stanicu. U ovom su radu određivane minimalne inhibitorne i minimalne baktericidne koncentracije različitih porfirina na L. pneumophila u bujonu dilucijskom metodom. Korišteno je crveno svjetlo ukupne doze 24 J cm-2, a osvjetljavanje je trajalo 10 minuta. Najjači antibakterijski učinak utvrđen je kod amfipatskog porfirina i potrebna su daljnja istraživanja o djelotvornosti ovih spojeva i primjene fotodinamičke terapije u inaktivaciji legionele u vodi.

 

Legionella pneumophila is a gram-negative bacterium whose natural habitat is water, including rivers, lakes and streams. L. pneumophila is the cause of Pontiac fever and Legionnaires’ disease. Contaminated water distribution systems and air humidifiers are just some of the infection sources. Despite the implementation of antiepidemic measures, the occurrence of Legionnaires’ disease is increasingly frequent, thus requiring a development of new methods for removing legionella from water. One of the approaches is antimicrobial photodynamic therapy, which involves the joint action of photosensitizer, molecular oxygen and visible light of a certain wavelength to produce singlet oxygen and reactive oxygen species that kill the microbial cell. In this paper, minimum inhibitory and minimum bactericidal concentrations of different porphyrins on L. pneumophila were determined with broth dilution method. We used red light in the total dose of 24 J cm-2, while the illumination lasted 10 minutes. The strongest antibacterial effect was established for amphipathic porphyrin. Further studies on the efficiency of these compounds and the use of photodynamic therapy in the inactivation of Legionella in water are required.

Kategorija: 
Prethodno priopćenje / Preliminary Report
Ključne riječi/Key words: 

amfipatski porfirin, protumikrobna fotodinamička terapija, Legionella pneumophila

amphipathic porphyrin, antimicrobial photodynamic therapy, Legionella pneumophila

Podaci o autorima/Authors affiliations: 

1Odjel za biotehnologiju Sveučilišta u Rijeci, Radmile Matejčić 2, 51000 Rijeka, ivona.viduka@gmail.com

 

2Medicinski fakultet Sveučilišta u Rijeci, Braće Branchetta, 51000 Rijeka

Literatura/References: 

Almeida A.; Cunha A.; Faustino M. A. F.; Tome A. C.; Neves M. G. P. M. S. (2011.): Porphyrins as Antimicrobial Photosensitizing Agents, Chapter 5, iz knjige: Photodynamic Inactivation of Microbial Pathogens: Medical and Environmental Applications, 11, 83-160.

 

Alves E.; Costa L., Carvalho C. MB.; Tome J. PC.; Faustion M. A:; Neves M. GPMS.; Tome A. C.; Cavaleiro J. AS.; Cunha A.; Almeida A. (2009.): Charge effect on the photoinactivation of Gram-negative and Grampositive bacteria by cationic meso-substituted porphyrins. BMC Microbiology, 70(9), 1-13.

 

Alves E.; Faustino M. A. F.; Tome J. P. C.; Neves M. G. P. M. S.; Tome A. C.; Cavaleiro J. A. S.; Cunha A.; Gomes N. C. M.; Almeida A. (2011.): Photodynamic Antimicrobial Chemotherapy in Aquaculture: Photoinactivation Studies of Vibrio fischeri, PLoS One, 6(6), 1-9.

 

Bajtal H. (2013.): Učinkovita rješenja za zaštitu od legionela, dostupno na: http://www.energetikanet.com/specijali/izdvajamo/ucinkovita-rjesenjaza-zastitu-od-legionela-16397, pristupljeno: 15.6.2018.

 

Bhatti M.; MacRobert A.; Meghji S.; Henderson B.; Wilson M. (1998.): A Study of the Uptake of Toluidine Blue O by Porphyromonas gingivalis and the Mechanism of Lethal Photosensitization. Photochemistry and Photobiology, 68(3), 370-376.

 

de Melo W. CMA.; Nobrega de Oliveira P.A.M.; Gupta A.; Vecchio D.; Sadasivam M.; Chandran R.; Huang Y.-Y.; Yin R.; Perussi L. R,;Tegos G. P.; Perussi J. R.; Dai T.; Hamblin M. R (2013.): Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection. Expert Review of Anti-infective Therapy, 11(7), 669-693.

 

Dutikova Y. V.; Borisova O. F.; Shchyolkina A. K.; Lin J.; Huang S.; Shtil A. A.; Kaluzhny D. N. (2010.): 5,10,15,20-Tetra-(N-methyl-3-pyridyl)porphyrin destabilizes the antiparallel telomeric quadruplex d(TTAGGG)4. Molecular Biology, 44(5), 823-831.

 

Edelstein P.H.; Ciancioto N.P. (2006.): Legionella Species and Legionnaires’ Disease. In: Dworkin M., Falkow S., Rosenberg E., Schleifer KH., Stackebrandt E. The Prokaryotes., 6, 988 – 1033.

 

European Centre for Disease Preention and Control (2018.): Legionnaires’ disease. Annual epidemiological report for 2016, dostupno na: https://ecdc.europa.eu/sites/portal/files/documents/legionnaires-diseaseannual-epidemiological-report.pdf, pristupljeno: 20.11.2018.

 

Fueda Y.; Hashimoto M.; Nobuhara K.; Yokoi H.; Komiya Y.; Shiragami T.; Matsumoto J.; Kawano K.; Suzuki S.; Yasuda M. (2005.): Visible-Light Bactericidal Effect of Silica Gel-supported Porphyrinatoantimony (V) Catalyst on Legionella Species Occurring in the Living Environmental Fields. Biocontrol Science, 10(1-2), 55-60.

 

Jori G.; Fabris C.; Soncin M.; Ferro S.; Coppellotti O.; Dei D.; Fantetti L.; Chiti G.; Roncucci G. (2006.): Photodynamic Therapy in the Treatment of Microbial Infections: Basic Principles and Perspective Applications. Lasers in Surgery and Medicine, 38(5), 468-481.

 

Josefsen LB; Boyle RW (2008.): Photodynamic Therapy and the Development of Metal-Based Photosensitisers, Metal-Based Drugs, 1-24.

 

Kharkwal G. B.; Sharma S. K.;. Huang Y.-Y.; Dai T.; Hamblin M. R. (2011.): Photodynamic Therapy for Infections: Clinical Applications. Lasers in Surgery and Medicine, 43(7), 755-767.

 

Khodr A.; Kay E.; Gomez-Valero L.; Ginevra C.; Doublet P.; Buchrieser C.; Jarraud S. (2016.): Molecular epidemiology, phylogeny and evolution of Legionella. Infection, Genetics and Evolution. 43, 108-122.

 

Maisch T. (2015.): Resistance in antimicrobial photodynamic inactivation of bacteria, Photochem. Photobiol. Sci., 14(8), 1518-1526.

 

Malatesti N.; Harej A.; Kraljević Pavelić S.; Lončarić M.; Zorc H.; Wittine K.; Andjelković U.; Josic D. (2016.): Synthesis, characterisation and in vitro investigation of photodynamic activity of 5-(4-octadecanamidophenyl)-10,15,20-tris(Nmethylpyridinium-3-yl)porphyrintrichloride on HeLa cells using low light fluence rate. Photodiagnosis and Photodynamic Therapy, 15, 1-12.

 

Malatesti N.; Munitić I.; Jurak I. (2017.): Porphyrin based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents. Biophysical reviews, 9(2), 149-168.

 

Nyman E. S.; Hynninen P. H. (2004.): Research advances in the use of tetrapyrrolic photosensitizers for photodnamic therapy. Journal of Photochemistry and Photobiology B: Biology, 73(1-2), 1-28.

 

Orlandi V. T.; Caruso E.; Tettamanti G.; Banfi S.; Barbieri P. (2013.): Photoinduced antibacterial activity of two dicationic 5,15-diarylporphyrins. Journal of Photochemistry and Photobiology B: Biology, 127, 123-132.

 

Pereira M. A.; Faustino M. A. F.; Tomé J. P. C.; Neves M. G. P. M. S.; Tomé A. C.; Cavaleiro J. A. S.; Cunhaa Â.; Almeida A. (2014.): Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Photochemical & Photobiological Sciences, 13(4), 680-690.

 

Pisarek S.; Maximova K.; Gryko D. (2014.): Strategies toward the synthesis of amphiphilic porphyrins, Tetrahedron. 70(38), 6685–6715.

 

Rakić A.; Perić J.; Štambuk-Giljanović N. (2013.): Prisutnost bakterija Legionella pneumophila u toploj vodovodnoj vodi u ovisnosti o ekološkim čimbenicima. Hrvatske vode, 83, 1-6.

 

Rathore, M. H (2018.): Legionella Infection, dostupno na: http://emedicine.medscape.com/article/965492-overview#a4, pristupljeno: 15.6.2018.

 

Rosa, L.P.; da Silva, F.C. (2014): Antimicrobial Photodynamic Therapy: A New Therapeutic Option to Combat Infections. Medical Microbiology & Diagnosis, 3(4), 1-7.

 

Rossi G.; Goi D.; Comuzzi C (2012.): The photodynamic inactivation of Staphylococcus aureus in water using visible light with a new expanded porphyrin. Journal of Water and Health, 10(3), 390-399.

 

Stallivieri A.; Le Guern F.; Vanderesse R.; Meledje E.; Jori G.; Frochot C.; Acherar S. (2015.): Synthesis and photophysical properties of the photoactivatable cationic porphyrin 5-(4-N-dodecylpyridyl)-10 , 1 5 , 2 0 - t r i ( 4 - N - m e t h y l p y r i d y l ) - 21 H , 2 3 H - porphyrin tetraiodide for anti-malaria PDT. Photochemical & Photobiological Sciences, 14(7), 1290-1295.

 

Wilson B.C.; Patterson M.S. (2008.): The physics, biophysics and technology of photodynamic therapy. Phys. Med. Biol., 53(9), 61–109.

 

World Health Organization (2007.): Legionella and the prevetion of legionellosis, dostupno na: http://www.who.int/water_sanitation_health/emerging/legionella.pdf, pristupljeno: 15.6.2018.