Hrvatske vode
 
Katalitička oksidacija fenolne otpadne vode vodikovim peroksidom
Catalytic oxidation of phenol in wastewater using hydrogen peroxide

Karolina Maduna1, Stanka Zrnčević2

Sažetak/Abstract: 

Uporaba katalizatora u procesima obrade industrijskih otpadnih voda najdjelotvorniji je put za unaprjeđenje postojećih, ali i za razvoj novih djelotvornih tehnologija s posebnim naglaskom na uštedu sirovina i energije te ekonomičnost procesa. Katalitička oksidacija organskih zagađenja vodikovim peroksidom, poznata kao CWPO metoda, jedan je od inovativnih postupaka koji ispunjava navedene zahtjeve. Stoga je u ovom radu proučavana aktivnost i stabilnost kalciniranog Cu/X-1273 katalizatora u reakciji oksidacije fenola vodikovim peroksidom. Karakterizacija katalizatora obuhvaćala je rengensku difrakcijsku analizu (XRD), skenirajuću elektronsku mikrografiju (SEM), elementarnu analizu (AAS) te određivanje specifične površine standardnom BET metodom. Kinetička mjerenja provođena su pri atmosferskom tlaku, različitim temperaturama (323 K - 353 K), konstantnoj koncentraciji fenola (0,01 mol dm-3) te vodikovog peroksida (0,1 mol dm-3). Masa katalizatora iznosila je 0,5 g dm-3, dok se veličina zrna kretala od 0,03 do 1,0 mm. Eksperimentalni podatci testirani su sljedećim kinetičkim modelima za oksidaciju fenola rF = kF cF cVP i raspad vodikova peroksida rVP = kVP cVP + kF cF cVP. Kinetički parametri procijenjeni su Nelder-Meadovom metodom nelinearnog optimiranja. Djelotvornost katalizatora praćena je preko konverzije fenola i vodikovog peroksida te skidanja bakra sa zeolitnog nosača. Na osnovi dobivenih rezultata zaključeno je da aktivnost i stabilnost katalizatora ovise o temperaturi, kao i o veličini zrna Cu/X-1273. U reakcijama u kojima su zrna katalizatora bila veća od 0,4 mm dolazi do izražaja unutarfazni otpor prijenosu tvari za molekulu fenola, što je potvrđeno i određivanjem energije aktivacije.

 

The use of catalysts in the processes of industrial wastewater treatment is the most effective manner both to improve the existing and to develop new efficient technologies, with a special emphasis on saving raw materials and energy as well as cost-effectiveness of the process. Catalytic oxidation of organic pollution using hydrogen peroxide is known as the CWPO method, an innovative procedure that fulfils the mentioned requirements. This paper, therefore, explores the activity and stability of calcined Cu/X-1273 catalyst in the phenol oxidation reaction with hydrogen peroxide. The catalyst characterization included x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), elementary analysis (AAS) and determination of specific surface area by the standard BET method. Kinetic measurements were carried out at atmospheric pressure, different temperatures (323 K – 353 K) and constant concentrations of phenol (0.01 mol dm-3) and hydrogen peroxide (0.1 mol dm-3). The catalyst mass equalled 0.5 g dm-3, with the grain size ranging from 0.03 to 1.0 mm. Experimental data were tested using the following kinetic models for phenol oxidation: rF = kF cF cVP and for decomposition of hydrogen peroxide: rVP = kVP cVP + kF cF cVP. The kinetic parameters were assessed by the Nelder-Mead method of nonlinear optimization. The catalyst efficiency was monitored through phenol and hydrogen peroxide conversion and copper removal from the zeolite support. Based on obtained results, it was concluded that the activity and stability of the catalyst depend both on temperature and Cu/X-1273 grain size. In the reactions in which catalyst grains were larger than 3.25 mm, there was a marked interphase resistance in the transfer of matter for the phenol molecule, which was also confirmed by determining the activation energy.

Kategorija: 
Izvorni (originalni) znanstveni članak / Original Scientific Paper
Ključne riječi/Key words: 

CWPO, oksidacija fenola, Cu/X-1273, kinetička analiza

CWPO, phenol oxidation, Cu/X-1273, kinetic analysis

Podaci o autorima/Authors affiliations: 

1 Agencija za strukovno obrazovanje i obrazovanje odraslih, Amruševa 4, Zagreb

2 Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, Maručićev trg, Zagreb, szrnce@fkit.hr

Literatura/References: 

Blanco M.; Martinez A.; Marcaide A.; Aranzabe E.; Aranzabe A. (2014.): Heterogeneous Fenton catalyst for the efficient removal of azo dyes in water. American Journal of Analytical Chemistry, 5, 490-499.

 

Chiong T.; Lau S.Y.; Khor E.H.; Danquah M.K. (2014.): Enzymatic approach to phenol removal from wastewater using peroxidases. OA Biotechnology, 10, 3-9.

 

de Morais P.; Stoichev T.; Basto M.C.P.; Vasconcelos M.T.S.D. (2012.): Extraction and pre-concentration techniques for chromatographic determination of chlorophenols in environmental and food samples. Talanta, 89, 1–11.

 

Deng Y.; Zhao R. (2015.): Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1, 167-176.

 

European Environmental Agency (2018.): European waters-Assessment of status and pressures 2018, EEA Report No 7/2018.

 

Feng Y.B.; Hong L.; Liu A.L.; Chen W.D.; Li G.W.; Chen W.; Xia X.H. (2015.): High-efficiency catalytic degradation of phenol based on the peroxidase-like activity of cupric oxide nanoparticles. International Journal of Environmental Science and Technology, 12, 653–660.

 

Granato T.; Katović A.; Maduna Valkaj K.; Zrnčević S. (2008.): Zeolite based ceramics as catalysts for WHPCO of phenol and poly-phenols. Zeolites and Related Materials: Trends, Targets and Challenges ; Proceedings of 4th International FEZA Conference; Gedeon, A., Massiani, P., Babonneau, F. (Eds.), Paris, Elsevier B.V., p. 1171-1175.

 

Huang K.; Xu Y.; Wang L.; Wu D. (2015.): Heterogeneous catalytic wet peroxide oxidation of simulated phenol wastewater by copper metal–organic frameworks. RSC Advances, 5, 32795-32803

 

Ibrahim M.S.; Ali H.I.; Taylor K.E.; Biswas N.; Bewtra J.K. (2011.): Enzyme catalyzed removal of phenol from refinery waste water. Water Environment Research, 73, 165-172.

 

Inchaurrondo N.; Cechinia J.; Fontb J.; Haurea P. (2012.): Strategies for enhanced CWPO of phenol solutions. Applied Catalysis B: Environmental, 111-112, 641-648.

 

Kaale L.D.; Katima J.H.Y. (2013.): Performance of activated carbons in the catalytic wet peroxide oxidation (CWPO) of maleic acid. Journal of Engineering and Technology Research, 5, 189-199.

 

Krishnan S.; Rawindran H.; Sinnathambi C.M.; and J W Lim J.W. (2017.): Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants. IOP Conference Series: Materials Science and Engineering, Volume 206, conference 1 -11.

 

Kurian M.; Eldhose A.; Thasleenabi R. M. (2012.): Mild temperature oxidation of phenol over rare earth exchanged aluminum pillared montmorillonites. International Journal of Environmental Research, 6, 669-676.

 

Liotta, L. F.; Gruttadauria M.; Di Carlo G.; Perrini, G.; Librando V. (2009.): Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity. Journal of Hazardous Materials, 162, 588−606.

 

Maduna Valkaj K.; Katović A.; Zrnčević S. (2011.): Catalytic properties of Cu/13X zeolite based catalyst in catalytic wet peroxide oxidation of phenol. Industrial Engineering Chemistry and Research, 50, 4390–4397

 

Maduna Valkaj K.; Wittine O.; Katović A. (2015.): Katalitička oksidacija fenola uz zeolitni katalizator Cu/Y5. 1. dio. Kemija u industriji, 64, 1-10

 

Maduna Valkaj K.; Kaselj I.; Smolković J.; Zrnčević S.; Kumar N.; Murzin D. Y. (2015.a): Catalytic wet peroxide oxidation of olive oil mill wastewater over zeolite based catalyst. Chemical Engineering Transaction, 43, 853−858.

 

Maduna K.; Zrnčević S. (2017.): Katalitička obrada fenolnih otpadnih voda. Hrvatske vode, 25 (2017.) 149-158.

 

Maduna K.; Kumar N.; Aho A.; Wärnå J.; Zrnčević S.; Murzin D.Yu. (2018.): Kinetics of catalytic wet peroxide oxidation of phenolics in olive oil mill wastewaters over copper catalysts. ACS Omega, 3, 7247−7260.

 

Mohammadi S.; Kargari A.; Sanaeepur H.; Abbassian K.; Najafi A.; Mofarrah E. (2015.): Phenol removal from industrial wastewaters: a short review. Desalination and Water Treatment, 53, 2215-2234.

 

Namkung K.C.; Burgess A.E.; Bremne D.H.; Staines H. (2008.): Advanced Fenton processing of aqueous phenol solutions: A continuous system study including sonication effects. Ultrasonics Sonochemistry, 15, 171–176.

 

Nikolopoulos A.N.; Igglessi-Markopoulou O.; Papayannakos N. (2006.): Ultrasound assisted catalytic wet peroxide oxidation of phenol: kinetics and intraparticle diffusion effect. Ultrasonics Sonochemistry, 13, 92–97.

 

Rokhina E. V.; Virkutyte J. (2011.): Environmental application of catalytic processes: Heterogeneous liquid phase oxidation of phenol with hydrogen peroxide. Critical Reviews in Environmental Science and Technology, 41, 125-167.

 

Santos A.; Yustos P; Quintanilla A.; Rodriguez S.; Garcıa-Ochoa F. (2002.): Route of the catalytic oxidation of phenol in aqueous phase; Applied Catalysis B: Environmental, 39, 97–113.

 

Subbaramaiah, V.; Srivastava, V. C.; Mall, D. (2013.): Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15. Journal of Hazardous Materials, 248-249, 355-363.

 

Wang J.L.; Xu L.J. (2012.): Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 42, 251–325.

 

Wittine O.; Maduna Valkaj K..; Zrnčević S. (2014.): Obrada fenolne otpadne vode katalitičkim oksidacijskim procesima. Hrvatske vode, 22, 287-296.

 

Zrnčević S. (2006.): Eksperimentalne metode ispitivanja katalizatora, Kemija u industriji, 55, 321–332.