Hrvatske vode
 
Metode istraživanja cijanobakterija u vodenim ekosustavima
Cyanobacteria research methods in water ecosystems

Anamarija Kolda1

Sažetak/Abstract: 

Cijanobakterije su najstariji fotosintetski organizmi na Zemlji. Izuzetno su zanimljivi zbog svoje građe i uloge u evolucijskim procesima stvaranja eukariotske stanice. Naseljavaju cijeli niz staništa koji su često karakterizirani ekstremnim životnim uvjetima. Popunjavaju brojne ekološke niše te značajno doprinose kruženju elemenata u prirodi. Cijanobakterije nazivamo ˝pionirima˝, jer prve nastanjuju negostoljubive okoliše. Istraživanje cijanobakterija u vodenim ekosustavima često predstavlja izazov u raznim znanstvenim područjima. Primjenjuju se brojne metode, počevši od kemijskih, bioloških i ekoloških metoda do najsuvremenijih molekularnih metoda i optičkih praćenja putem satelita. U ovom su radu prikazana dva primjera istraživanja cijanobakterija: u mikrobnom obraštaju (eng. microbial mat), gdje se javljaju kao važna fotoautotrofna komponenta te u akvakulturi, gdje svojim cvjetanjem i toksinima mogu prouzročiti negativne posljedice za zdravlje čovjeka i ekosustav te materijalne štete.

 

Cyanobacteria are the oldest photosynthetic organisms on earth. They are exceptionally interesting due to their structure and their role in the evolutionary processes of eukaryotic cell creation. They are present in a number of habitats that are frequently characterized by extreme living conditions. They fi ll numerous ecological niches and signifi cantly contribute to the circulation of elements in nature. Cyanobacteria are called the ˝pioneers˝ because they are the fi rst to settle in inhospitable environments. Cyanobacteria research in water ecosystems frequently poses a challenge to different scientifi c areas. Numerous methods are implemented, from chemical, biological or ecological methods to the most advanced molecular methods and optical monitoring via satellites. The paper presents two examples of cyanobacteria research - in a microbial mat, where they occur as an important photoautotrophic component, and in aquaculture, where their blooms and toxins may cause adverse consequences to human and ecosystem health and material damage as well.

Kategorija: 
Stručni članak / Professional Paper
Ključne riječi/Key words: 

cijanobakterije, metode istraživanja, cvjetanje cijanobakterija, mikrobni obraštaj, akvakultura

cyanobacteria, research methods, cyanobacterial blooms, microbial mat, aquaculture

Podaci o autorima/Authors affiliations: 

1Institut Ruđer Bošković, Bijenička 54, 10000 Zagreb, Anamarija.Kolda@irb.hr

Literatura/References: 

Adams, D.G. (2000.): Symbiotic Interactions. U The Ecology of Cyanobacteria, 523–61. Kluwer Academic Publishers, Dordrecht, Nizozemska

 

Adams, D.G., Bergman, B., Nierzwicki-Bauer, S.A., Duggan, P.S., Rai, A.N., Schüssler, A. (2013.): Cyanobacterial-Plant Symbioses. U The Prokaryotes, 359–400. Springer, Berlin Heidelberg, Njemačka

 

Alvarenga, D.O., Fiore, M.F., Varani, A.M. (2017.): A Metagenomic Approach to Cyanobacterial Genomics. Frontiers in Microbiology 8 (5), 1–16.

 

Awramik, S. M. (1976.): Gunflint stromatolites: microfossil distribution in relation to stromatolite morphology. U: Stromatolites, M. R. Walter (Ed.), Elsevier, Amsterdam, Nizozemska

 

Babin, M., Stramski, D. (2002.): Light Absorption by Aquatic Particles in the near-Infrared Spectral Region. Limnology and Oceanography 47 (3): 911–15.

 

Banack, S. A., Metcalf, J.S., Jiang, L., Craighead, D., Ilag, L.L., Cox, P.A. (2012.): Cyanobacteria Produce N-(2-Aminoethyl)Glycine, a Backbone for Peptide Nucleic Acids Which May Have Been the First Genetic Molecules for Life on Earth.  PLoS ONE 7(11):e49043

 

Barrick, J. E., Yu,  D.S., Yoon, S.H., Jeong, H., Oh, T.K., Schneider, D., Lenski, R. E., Kim, J.F. (2009.): Genome Evolution and Adaptation in a Long-Term Experiment with Escherichia Coli. Nature 461 (7268): 1243–47.

 

Bauer K., Díez B., Lugomela C., Seppälä S., Borg A.J., Bergman B. (2008.): Variability in Benthic Diazotrophy and Cyanobacterial Diversity in a Tropical Intertidal Lagoon. FEMS Microbiology Ecology 63 (2): 205–21.

 

Bellinger, E. G., Sigee D.C. (2016.): Freshwater Algae : Identification, Enumeration and Use as Bioindicators. John Wiley and Sons, Ltd. Chichester, Velika Britanija

 

Bergman, B., Rai, A.N., Rasmussen, U. (2007.): Cyanobacterial Associations. U Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations, 257–301. Springer, Dordrecht, Nizozemska

 

Biller, S.J., Berube,P.M., Lindell, D., Chisholm, S.W. (2015.): From Prochlorococcus: the structure and function of collective diversity. Box 1: Prochlorococcus and Synechococcus: what's in a name?. Nature Reviews Microbiology 13, 13–27

 

Bolhuis, H., Cretoiu, M.S., Stal, L.J. (2014.): Molecular ecology of microbial mats. FEMS Microbial Ecology 90 (2), 335 - 350

 

Bresciani, M., Giardino, C., Bartoli, M., Tavernini, S.,  Bolpagni, R., Nizzoli, D. (2011.): Recognizing Harmful Algal Bloom Based on Remote Sensing Reflectance Band Ratio. Journal of Applied Remote Sensing 5 (1)

 

Bresciani, M., Giardino, C.,  Lauceri, R.,  Matta, E.,  Cazzaniga, I., Pinardi, M., Lami, A. (2017.): Earth Observation for Monitoring and Mapping of Cyanobacteria Blooms. Case Studies on Five Italian Lakes. Journal of Limnology, 76 (1s): 127-139

 

Callieri, C., Cronberg, G. and Stockner, J. (2012.): Freshwater Picocyanobacteria: Single Cells,

Microcolonies and Colonial Forms. In: Ecology of Cyanobacteria: Their Diversity in Time and Space, 2nd ed. (ed. B. Whitton), Springer Publishers, pp. 229–269.

 

Cohen Y., Gurevitz, M. (2006.): The cyanobacteria - Ecology, physiology and molecular genetics, in The Prokaryotes. Springer N. Y. pp. 1074-1098.

 

Coyler, C.L., Kinkade, C.S., Viskari, P.J., Landers, J.P. (2005.): Analysis of cyanobacterial pigments and proteins by electrophoretic and chromatographic methods. Analytical and Bioanalytical Chemistry, 382(3):559-69

 

Dvořák, P., Casamatta, D.A., Poulíčková, A., Hašler, P., Ondřej, V., Sanges, R. (2014.): “Synechococcus : 3 Billion Years of Global Dominance.” Molecular Ecology 23 (22): 5538–51.

Elmerich, C., Newton, W.E. (2007.): Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations. Springer, Dordrecht, Nizozemska

 

Eriksson, J.E., Meriluoto, J.A.O., Kujari, H.P.,  Österlund, K., Fagerlund, K.,  Hallbom, L. (1988.): Preliminary Characterization of a Toxin Isolated from the Cyanobacterium Nodularia Spumigena. Toxicon 26 (2): 161–66

 

FAO (2014.): The State of World Fisheries and Aquaculture. Rim, Italija

 

Finni, T., Kononen K., Olsonen, R., Wallstrom, K. (2001.): The History of Cyanobacterial Blooms in the Baltic Sea. A Journal of the Human Environment 30(4-5):172-178   

 

Flombaum, P., Gallegos, J.L., Gordillo, J.F.,  Rincón,J.,  Zabala, L.L.,  Jiao, N.,Karl, D.M.,  i sur. (2013.): Present and Future Global Distributions of the Marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences of the United States of America 110 (24). 9824–29.

 

Fujiki, H., Ikegami, K., Hakii, H., Suganuma, M., Yamaizumi, Z., Yamazato, K., Moore, R.E.,  Sugimura, T. (1985.): A Blue-Green Alga from Okinawa Contains Aplysiatoxins, the Third Class of Tumor Promoters. Japanese Journal of Cancer Research : Gann 76 (4): 257–59.

 

Fujiki, H., Sueoka, E., Suganuma, M. (1996.): Carcinogenesis of microcystins. In: Watanabe M., Harada K., Carmichael W., Fujiki H., ed. Toxic Microcystis., CRC Press, Boca Raton, SAD

 

Gilerson, A., Gitelson, A., Zhou, J., Gurlin, D., Moses, W., Ioannou, I., Ahmed, S. (2010.): Algorithms for Remote Estimation of Chlorophyll-a in Coastal and Inland Waters Using Red and near Infrared Bands. Optics Express 18 (23): 24109–25.

 

Gitelson, A., Dall’Olmo, G., Moses, W., Rundquist, D.C., Barrow, T., Fisher, T.R., Gurlin, D.,  Holz, J. (2008.): A Simple Semi-Analytical Model for Remote Estimation of Chlorophyll-a in Turbid Waters: Validation. Remote Sensing of Environment 112 (9): 3582–93.

 

Gons, H.J., Hakvoort, H.,  Peters, S.W.M., Simis S.G.H. (2005.): Optical Detection of Cyanobacterial Blooms. U Harmful Cyanobacteria, 177–99. Springer-Verlag, Berlin/Heidelberg, Njemačka

 

Gurlin, D., Gitelson, A.,  Moses, W.J. (2011.): Remote Estimation of Chl-a Concentration in Turbid Productive Waters — Return to a Simple Two-Band NIR-Red Model?. Remote Sensing of Environment 115 (12): 3479–90.

 

Hulburt, B.K., Brashear S.S., Zimba, P.V. (2011.): Detection of Cyanobacteria in Closed Water Systems in Southern Louisiana (USA). WATER 3, 79-86

Ito H., Tanaka, A. (2011.): Evolution of a divinyl chlorophyll-based photosystem in Prochlorococcus., PNAS, 108: 44, 18014–18019

 

Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (1997.): Phytoplankton pigments in oceanography - Guidelines to modern methods. UNESCO Publishing, Paris, Francuska

 

Komárek, J., Kaštovský, J., Mareš, J., Johansen J.R. (2014.): Taxonomic Classification of Cyanoprokaryotes (Cyanobacterial Genera) 2014, Using a Polyphasic Approach. Preslia 86 (4): 295–335.

 

Kolda, A., Petrić, I., Žutinić, P., Mejdandžić, M., Goreta., G., Gottstein., S., Ternjej, I., Gligora Udovič, M. (2017.): Environmental conditions shaping microbial mat community of the karst spring. 15th Symposium on Aquatic Microbial Ecology Abstract Book, Zagreb

 

Koonin, E.V. (2009.): Evolution of Genome Architecture. The International Journal of Biochemistry & Cell Biology 41 (2): 298–306.

 

Kruk, C., Huszar, V.L.M., Peeters, E.T.H.M., Bonilla, S., Costa, L., Lurling, M., i sur. (2010.): A morphological classification capturing functional variation in phytoplankton. Freshwater Biology, 55, 614–627.

 

Lund, J. W. G., Kipling, C.,  Le Cren, E. D. (1958.): The Inverted Microscope Method of Estimating Algal Numbers and the Statistical Basis of Estimations by Counting. Hydrobiologia 11 (2). Springer, Nizozemska

 

Luo, W., Chen, H.,  Lei, A., Lu, J., Hu, Z. (2014.). Estimating Cyanobacteria Community Dynamics and Its Relationship with Environmental Factors. International Journal of Environmental Research and Public  Health 11 (1). Multidisciplinary Digital Publishing Institute: 1141–60.

 

Ljubešić, Z., Mejdandžić, M., Bošnjak, I., Bosak, S. (2016.): Comparing methods in picoplankton abundance estimation. Rapport du Commission internationale pour l'exploration

scientifique de la Mer Mediterranee, 41. 278-278.

 

Mandal, S.D., Panda, A.K.,  Bisht, S.S., Kumar, N.S. (2015.): Microbial Ecology in the Era of Next Generation Sequencing. Next Generat Sequenc & Applic., S1

 

Margulis, L. Barghoorn, E.S., Ashendorf, D., Banerjee, S., Chase, D. F., Giovannoni, S., Stolz,  J. (1980.): The microbial community in the layered sediments at Laguna Figueroa, Baja California, Mexico – Does it have precambrian analogs. Precambrian Res 11: 93–123.

 

Meriluoto, J., Spoof, L., Codd, G. A. (2017.): Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. European Cooperation in the Field of Scientific and Technical Research (Organization), John Wiley & Sons, Chichester, Velika Britanija

 

Metcalf, J.S., Codd, G.A. (2009.): Cyanobacteria, neurotoxins and water resources: are there implications for human neurodegenerative disease?.  Amyotroph Lateral Scler., 10 suppl. 2:74-78

 

Mihaljević M. i Stević F., (2011.): Cyanobacterial blooms in a temperate river-floodplain ecosystem: the importance of hydrological extremes. Aquat. Ecol., 45, 335–349.

 

Mihaljević, M., Stević, F., Špoljarić, D.  Pfeiffer Žuna, T. (2014.): Spatial pattern of phytoplankton based on the morphology-based functional approach along a river-floodplain gradient. River Res. Appl., 31(2)

 

Mihaljević, M., Stević, F., Špoljarić, D.  Pfeiffer Žuna, T. (2014.): Application of Morpho-Functional Classifications in the Evaluation of Phytoplankton Changes in the Danube River. Acta Zoologica Bulgarica. 66:153-158

 

Mynderse, J.S., Moor, R.E., Kashiwagi, M., Norton, T.R. (1977.): Antileukemia activity in the Oscillatoriaceae: Isolation of debromoaplysia toxin from Lyngbya. Science, 196: 538–540.

 

Nürnberg, D.J., Morton, J., Santabarbara, S., Telfer, A., Joliot, P., Antonaru, L.A., Ruban, A.V.,  Cardona,  T., Krausz, E., Boussac, A., Fantuzzi, A., Rutherford, A.W. (2018.): Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science, 360: 6394, 1210-1213

 

Ochoa de Alda, J.A.G., Esteban, R., Diago, M.L., Houmard, J. (2014.): The Plastid Ancestor Originated among One of the Major Cyanobacterial Lineages. Nature Communications 5 (9): 4937.

 

O’Neil, J.M., Davis, T.W., Burford, M.A., Gobler, C.J. (2012.) The Rise of Harmful Cyanobacteria Blooms: The Potential Roles of Eutrophication and Climate Change. Harmful Algae 14 (2): 313–34.

Paerl, H.W. (2012.): Marine Plankton. U Ecology of Cyanobacteria II, 127–53. Springer, Dordrecht, Nizozemska

 

Pozdnyakov, D. V., Grassl, H. (2003.): Colour of Inland and Coastal Waters : A Methodology for Its Interpretation. Springer i Praxis Publishing, Chichester, Velika Britanija

 

Reynolds, C. S. (2006.): The Ecology of Phytoplankton. Cambridge: Cambridge University, Velika Britanija

 

Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L.,  Melo, S. (2002.): Towards a Functional Classification of the Freshwater Phytoplankton. Journal of Plankton Research 24 (5). Oxford University Press: 417–28.

 

Rodgers, J.H. (2008.): Algal Toxins in Pond Aquaculture. Southern Regional Aquaculture Center Publication No. 4605

 

Roy, S. (2011.): Phytoplankton Pigments : Characterization, Chemotaxonomy, and Applications in Oceanography. Cambridge University Press, Cambridge, Velika Britanija

 

Salmaso N. i Padisak J. (2007.): Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia, 578, 97–112.

 

Salmaso, N. Naselli-Flores, L., Padisak, J. (2015.): Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60, 603–619

 

Sandström, A., Glemarec, C., Meriluoto, J.A., Eriksson, J.E., Chattopadhyaya, J. (1990): Structure of a Hepatotoxic Pentapeptide from the Cyanobacterium Nodularia Spumigena. Toxicon, 28 (5): 535–40.

 

Sangwan, N.,  Xia, F., Gilbert, J.A. (2016.) Recovering complete and draft population

genomes from metagenome datasets. Microbiome, 4:8

 

Schirrmeister, B.E., Sanchez-Baracaldo, P., Wacey, P.D. (2016). Cyanobacterial Evolution during the Precambrian. International Journal of Astrobiology 15 (3): 187–204.

 

Sena, L., Rojas, D., Montiel, E., Gonzáles, H., Moret, J., and Naranjo, L. (2008): A strategy to obtain axenic cultures of Arthrospira spp. cyanobacteria. World J. Microbiol. Biotechnol. 27, 1045–1053.

 

Shimizu, Y. (1996.): Microalgal metabolites: A New Perspective. Annual Review of Microbiology 50 (1): 431–65.

 

Sinden, A., Sinang, S.C. (2015): Presence and abundance of Cyanobacteria in selected  aquaculture ponds in Perak, Malaysia and the relashionships with selected physicochemical paramters of water. Jurnal Teknologi 76 (1): 187-194

 

Singh, R. K., Tiwari, S.P., Rai, A.K.,  Mohapatra, T.M. (2011.): Cyanobacteria: An Emerging Source for Drug Discovery. The Journal of Antibiotics 64 (6): 401–12.

 

Solbrig, O.T. (1993.): Plant traits and adaptive strategies: their role in ecosystem function. In: Biodiversity and Ecosystem Function (Eds E.D. Schulze & H.A. Mooney),  97–116. Ecological Studies. Springer-Verlag, Berlin

 

Stanier, R.Y., Bazine, G.C. (1977.): Phototrophic Prokaryotes: The Cyanobacteria. Annual Review of Microbiology 31 (1): 225–74.

 

Stal, L.J. (2012.): Cyanobacterial mats and stromatolites. The Ecology of Cyanobacteria II. Their Diversity in Space and Time  (Whitton BA, ur.), 65–125. Springer, Nizozemska

 

Stević, F., Mihaljević, M.,  Špoljarić Maronić, D. (2013.): Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia 709(1)

 

Svirčev, Z., Tokodi, N., Drobac, D. (2017.): Review of 130 years of research on cyanobacteria in aquatic ecosystems in Serbia presented in a Serbian Cyanobacterial Database. Advances in Oceanography and Limnology, 8(1)

 

Svirčev, Z., Tokodi, N., Drobac, D., Codd, G.A. (2014.): Cyanobacteria in aquatic ecosystems in Serbia: Effects on water quality, human health and biodiversity. Systematics and Biodiversity 12(3)

 

Šilović, T., Ljubešić, Z., Mihanović, H., Olujić, G., Terzić, S., Jakšić, Ž., Viličić, D. (2011.): Picoplankton composition releated to mesoscale circulation on the Albanian boundary zone (Southern Adriatic) in late spring. Estuarine coastal and shelf science, 91, 519-525.

 

Tenaillon, O., Barrick, J.E., Ribeck, N., Deatherage, D.E., Blanchard, J.L., Dasgupta, A., Wu, G.C., i sur. (2016.): Tempo and Mode of Genome Evolution in a 50,000-Generation Experiment. Nature 536 (7615): 165–70.

 

Vázquez-Martínez, G., Rodriguez, M.H, Hernández-Hernández, F., Ibarra, J.E.(2004.): Strategy to obtain axenic cultures from field-collected samples of the cyanobacterium Phormidium animalis. J. Microbiol Methods. 57(1):115-21.

 

Viličić, D., Ljubešić, Z. (2017.): Razvoj metoda istraživanja fitoplanktona u Jadranskom moru. Hrvatske vode 25 (99): 49-58

 

Voća, N., (2015.): Izvješće o stanju okoliša u Republici Hrvatskoj 2014. Agencija za azaštitu okoliša, Zagreb, Hrvatska

 

Whitton, B.A., Potts, M. (2012.): Introduction to the Cyanobacteria. U Ecology of Cyanobacteria II, 1–13. Springer, Dordrecht, Nizozemska

 

Whitton, B. A., Potts, M. (2000.): The Ecology of Cyanobacteria : Their Diversity in Time and Space. Springer, Dordrecht, Nizozemska

 

World Health Organization. 2003. WHO | Guidelines for Safe Recreational Water Environments. http://www.who.int/water_sanitation_health/publications/srwe1/en/

 

Žutinić, P., Sviličić Petrić, I., Gottstein, S., Gligora Udovič, M., Kralj Borojević, K., Kamberović, J., Kolda, A., Plenković-Moraj, A., Ternjej, I. (2018.): Microbial mats as shelter microhabitat for amphipods in an intermittent karstic spring. Knowledge & Management of Aquatic Ecosystems, 419:7, 1-13.