Hrvatske vode
 
Numerički model oscilacija podmorske rešetkaste konstrukcije temeljene na morskom dnu
Numerical model of compliant tower oscillations

Vanja Travaš1

Sažetak/Abstract: 

U svrhu provedbe dinamičke analize rešetkastih offshore konstrukcija temeljenih na morskom dnu (eng. compliant tower), razvijen je numerički algoritam za proračun polja pomaka konstrukcije uslijed hidrodinamičkog djelovanja mora. Stohastička narav rasprostiranja valova u moru je uvedena u analizu putem funkcije gustoće snage spektra valova. Opterećenje konstrukcije morskim valovima se potom definira koristeći Morisonov model djelovanja sile. Kinematički parametri valova su definirani linearnom teorijom. Utjecaj vjetra na raspodjelu strujanja mora u vertikalnom smjeru je uzet u obzir kroz kontekst Ekmanove spirale. Rešetkasta konstrukcija je modelirana prostornim Euler-Bernoulijevim konačnim elementima. Inicijalizacija dinamičkog proračuna započinje utvrđivanjem polja pomaka nastalog uslijed statičkog djelovanja uzgona, korisnog i stalnog tereta. Integracija jednadžbi gibanja se provodi Newmarkovom β metodom. U svrhu izrade numeričkih primjera, prikazani algoritam je implementiran u programsko okruženje MathCAD 15. Numerički primjeri uključuju analizu slobodnih i prisilnih oscilacija konstrukcije te FFT analizu zapisa pomaka težišta operativne površine konstrukcije.

 

For the purpose of conducting a dynamic analysis of compliant towers, a numerical algorithm was developed for calculating the structure of the movement field caused by hydrodynamic action of the sea. The stochastic nature of wave spreading in the sea is introduced into the analysis through the function of power spectral density of waves. The structure’s wave load is then defined by applying the Morison model of force action. Kinematic parameters of waves are defined by the linear theory. The wind impact on the distribution of marine circulation in the vertical direction is taken into account in the context of the Ekman spiral. The compliant tower is modelled with spatial Euler–Bernoulli final elements. The initiation of the dynamic calculation starts with the determining the movement field resulting from static activity of buoyant force, dead and permanent loads. The integration of the equations of motion is performed by applying the Newmark-β method. To develop numeric parameters, the presented algorithm is implemented in the MathCAD 15 programming environment. The numerical parameters include the analysis of free and forced oscillations of the structure and the FFT analysis of the records of the centre of gravity shift of the structure’s operating surface.

Kategorija: 
Prethodno priopćenje / Preliminary Report
Ključne riječi/Key words: 

dinamička analiza, hidrodinamičko opterećenje mora, modalna analiza, prostorna rešetka, rezonancija, statička analiza

dynamic analysis, hydrodynamic loads of the sea, modal analysis, complaint tower, resonance, static analysis

Podaci o autorima/Authors affiliations: 

1Građevinski fakultet Sveučilišta u Rijeci, Radmile Matejčić 3, 51000 Rijeka, vanja.travas@gradri.uniri.hr

Literatura/References: 

Adrezin, R.; Bar-Avi, P.; Benaroya, H. (1996.): Dynamic Response of Compliant Offshore Structures - Review, Journal of Aerospace Engineering, Vol. 9, str. 114–131.

 

Bathe, K.J. (1996.): Finite Element Procedures, Prentice Hall.

 

Burcharth, H.F.; Hughes, S.A. (2003.): Fundamentals of Design. Coastal Engineering Manual, Part VI, Engineer Manual 1110-2-1100, U.S. Army Corps of Engineers, Washington, DC.

 

Clauss, G.; Lee, J. (2003.): Dynamic Behaviour of Compliant Towers in Deep Sea, Proceedings of OMAE03, 22nd International Conference on Offshore Mechanics and Arctic Engineering.

 

Chandrasekaran, S. (2017.): Dynamic Analysis and Design of Offshore Structures, Springer.

 

Ekman, V.W. (1905.): On the influence of the Earth´s rotation on ocean currents, Arkiv for Matematik, Astronomi och Fysik, 2, 1-53.

 

Goda, Y. (1988.): Statistical variability of sea state parameters as a function of a wave spectrum, Coastal Engineering in Japan, JSCE, Vol. 31, Br. 1, pp. 39-52. 483-492.

 

Han, S.M.; Benaroya, H. (2001.): Vibration of a Compliant Tower in Three-Dimensions, Journal of Sound and Vibration 250.

 

Haritos, N. (2007.): Introduction to the Analysis and Design of Offshore Structures – An Overview, EJSE Special Issue: Loading on Structures, str. 55–65.

 

Holthuijsen, L.H. (2007.): Waves in oceanic and costal waters, Cambridge Univerity Press, Cambridge.

 

Jenkins, A.D.; Bye, J.A.T. (2006.): Some aspects of the work of V.W. Ekman, Polar Record 42.

 

Journee, J.M.J.; Massie, W.W. (2001.): Offshore Hydromechanics, Delft University of Technology.

 

Kim, C. (2008.): Nonlinear Waves and Offshore Structures (Advanced Series on Ocean Engineering), World Scientific.

 

Mathsoft (1993.): Mathcad 15 - User Guide. Mathsoft Inc., Cambridge, MA.

 

Mitrović, S.; Ožbolt, J.; Travaš, V. (2014.): Threedimensional finite element formulation for nonlinear dynamic analysis of seismic site and structure response, European Journal of Environmental andb Civil Engineering, 2014.

 

Mohamad, A.A.; Al-Kadhimi, A.; Shaker, M. (2012.): Dynamic Behavior of Jacket Type Offshore Structure, Jordan Journal of Civil Engineering, Vol. 6, str. 418–435.

 

Morison, J.R.; Johnson, M.O.J.W.; Schaaf, S.A. (1950.): The force exerted by surface waves on piles, Petroleum Transactions (American Institute of Mining Engineers), Vol. 189, str. 149–154.

 

Sorić, J. (2004.): Metoda konačnih elemenata, Golden marketing.

 

Tabain, T. (1997.): Standard Wind Wave Spectrum for the Adriatic Sea Revisited (1977.-1997.), Brodogradnja 45(4), 303-313.

 

Tadejević, Z.; Pršić, M. (1981.): Pomorska hidraulika, I. dio – idealni valovi i struje, Fakultet građevinskih znanosti – Zagreb, Zagreb.

 

Travaš, V.; Kožar, I. (2008.): Statička i dinamička analiza prostorne lančanice, Građevinar 59.

 

Travaš, V.; Krvavica, N. (2014.): Spektralni i monokromatski pristup definiranju hidrodinamičkog opterećenja na vertikalne pilote, Hrvatske vode, Vol. 22, str. 13–22.

 

USFOS: Hydrodynamics, Theory, Description of use Verification, Reality Engineering, 2010.

 

Wilson, E. (1995.): Three Dimensional Static and Dynamic Analysis of Structures, Computers and Structures, Inc., Berkeley, California, USA.

 

Zienkiewicz, O.; Lewis, R.; Stagg, K. (1978.): Numerical Methods in Offshore Engineering, Wiley.