Hrvatske vode
 
Primjena elektrokoagulacijskog uređaja s ciljem smanjenja koncentracije amonijaka
Application of electrocoagulation devices for reducing ammonium concentrations

Goran Lončar1, Ivan Halkijević1, Hana Posavčić1, Ivica Ban1

Sažetak/Abstract: 

Analizirana je učinkovitost elektrokoagulacijskog (EK) uređaja u postupku pročišćavanja vode opterećene povišenom koncentracijom amonijaka. Postupak optimizacije EK procesa pročišćavanja proveden je temeljem mjerenja na pilot uređaju, te primjenom 3D numeričkog modela strujanja i pronosa. U provedbi analiza na pilot uređaju variran je protok kroz reaktore sa žrtvujućim željeznim (Fe) i aluminijskim (Al) elektrodama te inicijalna koncentracija NaCl. Osim koncentracije amonija (mjerenog preko NH4-N), u komori EK uređaja praćene su i promjene koncentracija nitrata (NO3-N), otopljenog kisika (DO), aluminija (Al3+) i klorida (Cl-), te promjene temperature vode i pH. Također su mjerene i brzine strujanja na odgovarajućem broju pozicija.

Primjenom 3D numeričkog modela definirana su polja strujanja i koncentracije primarnih procesnih varijabli (NH4-N i NO3-N) u procesu njihovog pronosa. Modelska parametrizacija oslanja se na rezultate mjerenja.

Rezultati provedenog istraživanja pokazali su da je efikasnost pročišćavanja primarno ovisna o inicijalnoj koncentraciji NaCl, a sekundarno i o protoku kroz reaktore. Izbor materijala elektrode (Fe ili Al) ima manje značajnu ulogu. Pri protoku kroz elektrode reaktore od 0.03 dm s-1, uz primjenu gustoće struje od 150 A m-2 i uz inicijalnu koncentraciju NaCl od 2 g dm-3, nakon 120 minuta rada elektrode postignuto je smanjenje koncentracije amonija NH4-N od 36 % (Al elektroda), odnosno 17 % (Fe elektroda). Povećanje koncentracije nitrata (NO3-N) u navedenim uvjetima iznosilo je 81 % (Al elektroda), odnosno 19 % (Fe elektroda).

 

The efficiency of an electrocoagulation (EC) device in the treatment procedure of wastewater in treating wastewater loaded with increased ammonium concentrations was analysed. The EC treatment optimisation procedure was carried out using measurements on the pilot device and a 3D numerical model of flow and transport. During the analyses, the flow through the reactors with iron (Fe) and aluminium (Al) electrodes was varied, including initial NaCl concentrations. Aside from the ammonium concentration (measured via NH4-N), the changes in the concentrations of nitrates (NO3-N), dissolved oxygen (DO), aluminium (Al3+) and chlorides (Cl-) as well as the changes in water temperature and pH in the in the chamber of the EC device were also monitored. Additionally, flow velocities were measured in a suitable number of positions.

By using a 3D numerical model, the flow fields and concentrations of primary process variables (NH4-N and NO3-N) in the process of their transport were determined. The model parameterization relies on the measurement results.

The results of the conducted research showed that the treatment efficiency primarily depends on the initial NaCl concentration, followed by the flow through the reactors while the selection of the electrodes’ material (Fe or Al) plays a less significant role. At the flow through the reactor’s electrodes of 0.03 dm s-1, applied current density of 150 A m-2 and initial NaCl concentration of 2 g dm-3, a reduction of ammonium concentration NH4-N of 36 % (Al electrode) i.e. 17 % (Fe electrode) was achieved after 120 minutes of the electrode operation. The increase in the nitrate concentration (NO3-N) in the stated conditions equalled 81 % (Al electrode) i.e. 19 % (Fe electrode).

Kategorija: 
Izvorni (originalni) znanstveni članak / Original Scientific Paper
Ključne riječi/Key words: 

elektrokoagulacija, pilot uređaj, numerički model, amonijak

electrocoagulation, pilot device, numerical model, ammonium

Podaci o autorima/Authors affiliations: 

1Građevinski fakultet Sveučilišta u Zagrebu, Kačićeva 26, 10000 Zagreb, gloncar@grad.hr

Literatura/References: 

Abbott, M.B.; Basco, D.R. (1989.): Computational Fluid Dynamics, an Introduction for Engineers, Longman Scientific & Technical, 425 str.

 

Ahmadian, M.; Yousefi, N.; Van Ginkel, S.; Zare M.R.; Rahimi, S. and Fatehizadeh, A. (2012.): Kinetic

study of slaughterhouse wastewater treatment by electrocoagulation using Fe electrodes, Water Science & Technology, 66 (4), str. 754-760.

 

Amosov, V.V.; Zil’berman, A.G.; Kucheryavykh, E.I.; Sorkin, E.I.; Ya., L.; Tsarik, S.A.; Eppel’, S.A.; Timoshekand, V.E.; Titov, I.P. (1976.): Experience in local treatment of wastewaters from petrochemical production, Chem. Tech. Fuels Oil 12 (1976), pp. 850–852.

 

Bukhari, A. (2008.): Investigation of the electrocoagulation treatment process for the removal of total suspended solids and turbidity from municipal wastewater, Bioresour. Technol., 99, str. 914–921.

 

Casulli, V. (1999.): A Semi-Implicit Finite Difference Method for Non-Hydrostatic, Free-Surface Flows, International Journal for Numerical Methods in Fluids, 30, str. 425-440.

 

Chen, G.H. (2004.): Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38, pp. 11–41.

 

Chorin, A.J. (1967.): A Numerical Method for Solving Incompressible Viscous Flow Problems, J. Comp. Physics, 2, str. 12-26.

 

Desai Raj N,; Mehta Helly H.; Dr. D S. Vyas, & Sejal Patel. (2016.): Removal of Ammonical Nitrogen by Electrocoagulation Method. Internation Journal Of Advance Research And Innovative Ideas In Education, 2(3), str. 505-509.

 

Do, J.S.; Chen, M.L. (1994.): Decolourization of dyecontaining solutions by electrocoagulation, J. Applied Electrochem., 24, str. 785–790.

 

Emamjomeh, M.; Sivakumar, M. (2005.): Electrocoagulation (EC) technology for nitrate removal, In N. Khanna (Eds.), Environmental Postgrad Conference, Environmental change: Making it Happen, Australia: School Civil & Chemical Engineering, RMIT, str. 1-8.

 

 

Emamjomeh, M.M.; Sivakumar, M. (2009.a): Review of pollutants removed by electrocoagulation and electrocoagulation/ flotation processes., J. Environ. Management., 90, str. 1663–1679.

 

Emamjomeh, M.M.; Sivakumar, M. (2009.b): Denitrification using a monopolar electrocoagulation / flotation (ECF) process, J. Environ. Management, 91, str. 516–522.

 

Feng, J.W.; Sun, Y.B.; Zheng, Z.; Zhang, J.B.; Li, S.; Tian, Y.C. (2007.): Treatment of tannery wastewater by electrocoagulation, J. Environ. Sci., 19, str. 1409–1415.

 

Ferziger, J.H. (1987.): Simulation of Incompressible Turbulent Flows, J. Comp. Physics, 69, str. 1-48.

 

Gross, E.S.; Bonaventura, L.; Rosatti, G. (2002.): Consistency with Continuity in Conservative Advective Schemes for Free Surface Models, International Journal for Numerical Methods in Fluids, 38, str. 307-327.

 

Hakizimana, J.N.; Gourich, B.; Chafi, M.; Stiriba, Y.; Vial, C.; Drogui, P.; Naja, J. (2017.): Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches, Desalination, 404, str. 1–21.

 

Ilhan, F.; Kurt, U.; Apaydin, O.; Gonullu, M. T. (2008.): Treatment of leachate by electrocoagulation using aluminum and iron electrodes, Journal of Hazardous Materials, 154, str. 381–389.

 

Kabdasli, I.; Arslan-Alaton, I.; Olmez-Hanci, T.; Tunay, O. (2012.): Electrocoagulation applications for industrial wastewaters: a critical review, Environmental Technology Reviews 1(1), str. 2 – 45.

 

Li, L.; Liu, Y. (2009.): Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics, Journal of Hazardous Materials, 161. str. 1010–1016.

 

Li, X.; Song, J.; Guo, J.; Wang, Z. and Feng, Q. (2011.): Landfill leachate treatment using lectrocoagulation, Procedia Environmental Sciences, 10, dio B, str. 1159-1164.

 

Liu, H.; Liss, S.; Allen, D. (1997.): The influence of anoxic conditioning of sludge on enhanced AOX (adsorbable organic halogen) removal in aerobic biological treatment system, Water Sci. Technol., 35, str. 77 – 84.

 

Lu., H. (2007.): One-equation Les modeling of rotating turbulence, Disertation, University of Visconsin, 120 str.

 

Mameri, N.; Yeddou, A.R.; Lounici, H.; Belhicine, D.; Grid, H.; Bariou, B. (1998.): Defluoridation of septentrional Sahara water of North Africa by electrocoagulation process using bipolar aluminium electrodes, Water Res., 32 (5), str. 1604–1612.

 

Matteson, M.J.; Dobson, R.L.; Glenn, R.W.; Kukunoor, N.S.; Waits, W.H.; Clayfield, E.J. (1995.): Electrocoagulation and separation of aqueous suspensions of ultrafine particles, Colloids Surfaces – A, 104, str. 101–109.

 

Min, K.S.; Yu, J.J.; Kim, Y.J.; Yun, Z. (2004.): Removal of ammonium from tannery wastewater by electrochemical treatment, J. Environ. Sci. Health Part A - Toxic/Hazard. Subst. Environ. Eng., A39, str. 1867–1879.

 

Mollah, M.Y.A.; Schennach, R.; Parga, J.R.; Cocke, D.L. (2001.): Electrocoagulation (EC) – science and application, J. Hazard. Mater. B, 84, 29 – 41.

 

Murphy, A.P. (1991.): Chemical removal of nitrate from water, Nature, 350, str. 223–225.

 

Nikolaev, N.V.; Kozlovskii, A.S.; Utkin, I.I. (1982.): Treating natural waters in small water systems by filtration with electrocoagulation, Sov. J.Water Chem. Technol., 4, str. 244–247.

 

Oreščanin, V.; Kollar, R.; Nađ, K. (2011.): The application of the ozonation / electrocoagulation treatment process of the boat pressure washing wastewater, Journal of environmental science and health. Part A, Toxic/ hazardous substances & environmental engineering, 46(12), str. 1338-1345.

 

Oreščanin V.; Kollar, R. (2012.a): A combined CaO/electrochemical treatment of the acid mine drainage from the “Robule” Lake. Journal of Environmental Science and Health, Part A. Toxic / Hazardous Substances and Environmental Engineering, 47(8), 1186-1191.

 

Oreščanin, V.; Kollar, R.; Ruk, D.; Nađ, K. (2012.b): Characterization and electrochemical treatment of landfill leachate, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 47(3), str. 462-469.

 

Oreščanin, V.; Kollar, R.; Nađ, K.; Mikelić Lovrenčić, I.; Findri Guštek, S. (2013.): Treatment of winery wastewater by electrochemical methods and advanced oxidation processes, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 48 (12), str. 1543-1547.

 

Osipenko, V.D.; Pogorelyi, P.I. (1977.): Electrocoagulation neutralization of chromium containing effluent, Metallurgist, 21, str. 44–45.

 

Plate, E.J.; Fedorovich, E.E; Viegas, D.X.; Wyngaard, J.C. (1997.): Bouyant Covection in Geophysical Flows, NATO ASI series, Series C: Mathematical and Physical Sciences – vol 513, Springer-Science + Bussines Media, 490 str.

 

Pouet, M.F.; Grasmick, A. (1995.): Urban wastewater treatment by electrocoagulation and flotation, Water Sci. Technol., 31, str. 275–283.

 

Rasmussen, E. B. (1993): Three Dimensional Hydrodynamic models, In: Abbott, M.B. and Price, N.A. eds), Coastal, Esturial and Harbour Engineer’s Reference Book, Chapman and Hall, London, str. 109-116.

 

Richtmeyer, R.D., Morton, K.W. (1994.): Difference Methods for Initial Value Problems, Kieger publishing company, 420 str.

 

Rebhun, M.; Lurie, M. (1993.): Control of organic-matter by coagulation and floc separation, Water Sci. Technol., 27, str. 1–20.

 

Rodi, W. (1993.): Turbulence Models and Their Application in Hydraulics - A State of the Art Review, IAHR Monographs, CRC Press, 124 str.

 

Sagaut, P. (2006.): Large Eddy Simulation for Incompressible Flows, Springer Science & Business Media, 556 str.

 

Smagorinsky, J. (1993): Some historical remarks on the use of nonlinear viscosities, In: Large eddy simulations of complex engineering and geophysical flows (B. Galperin and S. Orszag Eds.), Cambridge Univ. Press, 1993, str. 1-34.

 

Szpyrkowicz, L.; Naumczyk, F.; Zilio-Grandi, F. (1995.): Electrochemical treatment of tannery wastewater using Ti/Pt and Ti/Pt/Ir electrodes, Water Res., 29, str. 517–524.

 

Szpyrkowicz, L.; Kaul, S.N.; Neti, R.N. (2005.): Tannery wastewater treatment by electro-oxidation coupled with a biological process, J. Appl. Electrochem., 35, str. 381–390.

 

Tunay, O.; Kabdsha, I.; Arslan-Alaton, I.; Olmez-Hancı, T. (2010.): Chemical Oxidation Applications for Industrial Wastewaters, IWA Publishing, London.

 

UNESCO (1981.): Tenth report of the joint panel on oceanographic tables and standards, Unesco technical papers in marine science, 36, 25 str.

 

Van Hege, K.; Verhaege, M.; Verstraete, W. (2004.): Electro-oxidative abatement of low-salinity reverse osmosis membrane concentrates, Water Res., 38, str. 1550–1558.

 

Vanlangendonck, Y.; Cornisier, D.; Van Lierde, A. (2005.): Influence of operating conditions on the ammonia electro-oxidation rate inwastewaters frompower plants, Water Res., 39, str. 3028–3034.

 

Vested, H.J.; Justesen, P.; Ekebjærg, L. (1992.): Advection-Dispersion Modelling in Three Dimensions, Appl. Math. Modelling, 16, str. 506-519.

 

Vik, E.A.; Carlson, D.A.; Eikun, A.S.; Gjessing, E.T. (1984.): Electrocoagulation of potable water, Water Res., 18, str. 1355–1360.

 

Wang, Y.; Guo, X.; Li, J.; Yang, Y.; Lei, Z.; Zhang, Z. (2011.): Efficient Electrochemical Removal of Ammonia with Various Cathodes and Ti/RuO2-Pt Anode, Open Journal of Applied Sciences, 2, str. 241-247.

 

Yang, L.; Shen, Z.; Zhang, Y. (2016.): Influence of operating parameters on ammonia nitrogen removal from micro-polluted water by electrocoagulation-flotation with aluminum electrodes, 13th IWA Specialized Conference on Small Water and Wastewater Systems, Andreadakis A.; Mamais D.; Malamis S. (Ed.), Athens, Greece, str. 14 – 17.

 

Zidane, F.; Drogui, P.; Lekhlif, B.; Bensaid, J.; Blais, J.F.; Belcadi, S.; El Kacemi; K. (2008.): Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation, J. Hazard. Mater., 155, str. 153–163.