Hrvatske vode
 
Termička/elektrokemijska obrada klaoničkih otpadnih voda
Thermal/electrochemical processing of slaughterhouse wastewater

Višnja Oreščanin1, Robert Kollar2, Karlo Nađ2

Sažetak/Abstract: 

U radu je prikazana obrada klaoničkih otpadnih voda kombinacijom termičke predobrade i glavne elektrokemijske obrade uz simultano ozoniranje. Ispitana je učinkovitost uklanjanja karakterističnih pokazatelja te količina generiranog mulja obzirom na vrstu elektroda (nehrđajući čelik, željezo, aluminij), vrijeme obrade (5-30 minuta) i jakost struje (50-100 A). Otpadna voda je karakterizirana vrlo neugodnim mirisom, visokim vrijednostima boje (17400 CoPt), mutnoće (4230 NTU) ukupne suspendirane tvari (1730 mg dm-3), kemijske potrošnje kisika (3720 mg dm-3) te biokemijske potrošnje kisika (1870 mg dm-3) te povišenim vrijednostima amonija (128 mg dm-3) i fosfata (93 mg dm-3). Termičkom predobradom je uklonjeno 98,23% mutnoće, 89,94% boje, 75,14% ukupne suspendirane tvari (UST), 49,73% BPK5 i 36,29% KPK. Set elektroda od nehrđajućeg čelika se pokazao najučinkovitijim u uklanjanju organskih pokazatelja i amonija, a rezultirao je i najmanjim volumenom otpadnog mulja, dok su aluminijeve elektrode najučinkovitije u uklanjanju boje, ali uz najveću produkciju mulja. Najbolji rezultati su dobiveni kombinacijom sve tri vrste elektroda uz istovremeno ozoniranje uz kontaktno vrijeme 20 minuta, jakost struje od 70 A i napon od 10 V. Nakon elektrokoagulacije/elektroksidacije pomoću elektroda od nehrđajućeg čelika, elektrokoagulacije/ozoniranja pomoću željezovih elektroda, elektrokoagulacije/ozoniranja pomoću aluminijevih elektroda te završnog ozoniranja uklonjeno je 100% boje, mutnoće i UST, 99,77% KPK te 99,25% BPK5, 99,98% fosfata, 99,80% amonija i 43,86% ukupne otopljene tvari, a svi mjereni pokazatelji su zadovoljavali uvjete za ispust u okoliš.

 

The paper presents slaughterhouse wastewater treatment implemented as a combination of thermal pre-treatment and main electrochemical treatment, with a simultaneous ozonation. The efficiency of the characteristic indicator removal and the quantity of generated sludge according to electrode types (stainless steel, iron and aluminium), treatment time (5-30 minutes) and amperage (50-100 A) was tested. The wastewater is characterized by a very unpleasant odour, high colouring value (17400 CoPt), turbidity (4230 NTU), total suspended solids (1730 mg dm-3), chemical oxygen demand (3720 mg dm-3) and biochemical oxygen demand (1870 mg dm-3) as well as increased values of ammonium (128 mg dm-3) and phosphates (93 mg dm-3). Thermal pre-treatment removed 98.23% turbidity, 89.94% colour, 75.14% total suspended solids (TSS), 49.73% BOD5 and 36.29% COD. A stainless steel electrode set proved to be the most efficient in the removal of organic indicators and ammonium and the lowest sludge volume, whereas aluminium electrodes were the most efficient in colour removal, although with the highest sludge production. The best results were achieved by a combination of all three electrode types, with a simultaneous ozonation of 20-minute contact time, amperage of 70 A and voltage of 10 V. Following the electrocoagulation / electrooxidation by stainless steel electrodes, electrocoagulation / ozonation by iron electrodes and electrocoagulation / ozonation with aluminium electrodes and the final ozonation, 100% colour, turbidity and TSS were removed as well as 99.77% COD and 99.25% BOD5, 99.98% phosphates, 99.80% ammonium and 43.86% total dissolved solids. All measured indicators complied with the conditions for discharge into the environment.

Kategorija: 
Izvorni (originalni) znanstveni članak / Original Scientific Paper
Ključne riječi/Key words: 

aluminijeve elektrode, elektrode od nehrđajućeg čelika, elektrokoagulacija, klaonice, otpadne vode, ozoniranje, željezove elektrode

aluminium electrodes, stainless steel electrodes, electrocoagulation, slaughterhouses, wastewater, ozonation, iron electrodes

Podaci o autorima/Authors affiliations: 

1OREŠČANIN, j.d.o.o., A. Jakšića 30, 10000 Zagreb, vorescanin@gmail.com

 

2Napredna energija d.o.o., V. Prekrata 43, 10000 Zagreb

Literatura/References: 

Aguilar M.I.; Saez J.; Llorens M.; Soler A.; Ortuno J.F.; Meseguer V.; Fuentes, A. (2005.): Improvement of coagulation-flocculation process using anionic polyacrylamide as coagulant aid. Chemosphere, 58(1), 47-56.

 

Al-Mutairi N.Z.; Hamoda M.F.; Al-Ghusain, I. (2004.): Coagulant selection and sludge conditioning in a slaughterhouse wastewater treatment plant. Bioresource Technology, 95(2), 115-119.

 

Almandoz M.C.; Pagliero C.L.; Ochoa N.A.; Marchese, J. (2015.): Composite ceramic membranes from natural aluminosilicates for microfiltration applications. Ceramic International, 41(4), 5621-5633.

 

Amuda O.S.; Alade, A. (2006.): Coagulation/flocculation process in the treatment of abattoir wastewater. Desalination, 196(1-3), 22–31.

 

Asselin M.; Drogui P.; Benmoussa H.; Blais, J-F. (2008.): Effectiveness of electrocoagulation process in removing organic compounds from slaughterhouse wastewater using monopolar and bipolar electrolytic cells. Chemosphere, 72(11), 1727-1733.

 

Awang Z.B.; Bashir M.J.K.; Kutty S.R.M. Isa, M.H. (2011.): Post-Treatment of Slaughterhouse Wastewater using Electrochemical Oxidation. Research Journal of Chemistry and Environment, 15, 229-237.

 

Bayar S.; Yildiz Y.S.; Yilmaz A.E.; Irdemez, S. (2011.): The effect of stirring speed and current density on removal efficiency of poultry slaughterhouse wastewater by electrocoagulation method. Desalination, 280(1-3), 103-107.

 

Bayar S.; Yildiz Y.S.; Yilmaz A.E.; Koparal, A.S. (2014.): The effect of initial pH on treatment of poultry slaughterhouse wastewater by electrocoagulation method. Desalination and Water Treatment, 52(16-18), 3047-3053.

 

Bayramoglu M.; Kobya M.; Eyvaz M.; Senturk, E. (2006.): Technical and economic analysis of electrocoagulation for the treatment of poultry slaughterhouse wastewater. Separation and Purification Technology, 51 (3), 404-408.

 

Bazrafshan E.; Kord Mostafapour F.; Farzadkia M.; Ownagh K.A.; Mahvi, A.H. (2012.): Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process. PLoS One 7(6) art. no. e40108. http://dx.doi.org/10. 1371/journal. pone.0040108

 

Bohdziewicz J.; Sroka, E. (2005.): Integrated system of activated sludge-reverse osmosis in the treatment of the wastewater from the meat industry. Process Biochemistry, 40(5), 1517-1523.

 

Cao W.; Mehrvar, M. (2011.): Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes. Chemical Engineering Research and Design, 89 (7), 1136–1143.

 

Bustillo-Lecompte C.F.; Ghafoori S.; Mehrvar, M. (2016.): Photochemical degradation of an actual slaughterhouse wastewater by continuous UV/H2O2 photoreactor with recycle. Journal of Environmental Chemical Engineering, 4(1), 719-732.

 

Bustillo-Lecompte C.F.; Mehrvar, M. (2015.): Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. Journal of Environmental Management, 161, 287-302.

 

Bustillo-Lecompte C.F.; Mehrvar M.; Quinones-Bolanos, E. (2013.): Combined anaerobic-erobic and UV/H2O2 processes for the treatment ofsynthetic slaughterhouse wastewater. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 48(9), 1122-1135.

 

Bustillo-Lecompte C.F.; Mehrvar M.; Quinones-Bolanos, E. (2014.): Cost-effectiveness analysis of TOC removal from slaughterhouse wastewater using combined anaerobic-aerobic and UV/H2O2 processes. Journal of Environmental Management, 134, 145-152.

 

Caixetaa C.E.T.; Cammarotab M.C.; Xavier, A.M.F. (2002.): Slaughterhouse wastewater treatment: evaluation of a new three-phase separation system in a UASB reactor. Bioresource Technology, 81(1), 61-69.

 

Debik E.; Coskun, T. (2009.): Use of the Static Granular Bed Reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modeling. Bioresource Technology, 100(11), 2777-

2782.

 

De Sena R.F.; Tambosi J.L.; Genena A.K.; Moreira R.d.F.P.M.; Schroder H.Fr.; Jose, H.J. (2009.): Treatment of meat industry wastewater using dissolved air flotation and advanced oxidation processes monitored by GC-MS and LC-MS. Chemial Engineering Journal, 152(1), 151-157.

 

del Pozo R.; Diez V; Beltran, S. (2000.): Anaerobic pre-treatment of slaughterhouse wastewater using fixed-film reactors. Bioresource Technology, 71(2), 143-149.

 

Fongsatitkul P.; Wareham D.G.; Elefsiniotis P.; Charoensuk, P. (2011.): Treatment of a slaughterhouse wastewater: effect of internal recycle rate on chemical oxygen demand, total Kjeldahl nitrogen and total phosphorus removal. Environmental Technology, 32(15), 1755-1759.

 

Hsiao T.-H.; Huang J.-S.; Huang, Y.-I. (2012.): Process kinetics of an activated-sludge reactor system treating poultry slaughterhouse wastewater. Environmental Technology, 33(7), 829-835.

 

Jensen P.D.; Yap S.D.; Boyle-Gotla A.; Janoschka J.; Carney C.; Pidou M.; Batstone, D.J. (2015.): Anaerobic membrane bioreactors enable high rate treatment of slaughterhouse wastewater. Biochemical Engineering Journal, 97, 132-141.

 

Kobya M.; Senturk E.; Bayramoglu, M. (2006.): Treatment of poultry slaughterhouse wastewaters by electrocoagulation. Journal of Hazardous Materials, B133, 172–176.

 

Kundu P.; Debsarkar A.; Mukherjee, S. (2013.): Treatment of slaughter house wastewater in a sequencing batch reactor: performance evaluation and biodegradation kinetics. BioMed Research International, art. no. 134872. http://dx.doi.org/10.1155/2013/134872

 

Kundu P.; Debsarkar A.; Mukherjee, S. (2014.): Kinetic modeling for simultaneous organic carbon oxidation, nitrification, and denitrification of abattoir wastewater in sequencing batch reactor.  Bioremediation Journal, 18(4), 267-286.

 

Mees J.B.R.; Gomes S.D.; Vilas Boas M.A.; Gomes B.M.; Passig, F.H. (2011.): Kinetic behavior of nitrification in the post-treatment of poultry wastewater in a sequential batch reactor. Engenharia Agrícola, 31(5), 954-964.

 

Mees J.B.R.; Gomes S.D.; Hasan S.D.M.; Gomes B.M.; Vilas Boas, M.A. (2014.): Nitrogen removal in a SBR operated with and without pre-denitrification: effect of the carbon: nitrogen ratio and the cycle time. Environtal Technology, 35(1), 115-123.

 

Narodne novine: Pravilnik o graničnim vrijednostima emisija otpadnih voda (NN 80/13, 43/14, 27/15 i 3/16).

 

Núñez L.A.; Martínez, B. (1999.): Anaerobic treatment of slaughterhouse wastewater in an Expanded Granular Sludge Bed (EGSB) reactor. Water Science and Technology, 40(8), 99-106.

 

Oreščanin V.; Kollar R.; Nađ, K. (2011.): The electrocoagulation/advanced oxidation treatment of the groundwater used for human consumption. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 46(14), 1611-1618.

 

Oreščanin V.; Kollar R.; Nađ K.; Mikelić Lovrenčić I.; Findri Guštek, S. (2013.): Treatment of winery wastewater by electrochemical methods and advanced oxidation processes. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 48(12), 1543-1547.

 

Oreščanin V.; Kollar R.; Ruk D.; Nađ, K. (2012. a.): Characterization and electrochemical treatment of landfill leachate. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 47(3), 462-469.

 

Oreščanin V.; Kollar R.; Ruk D.; Nađ K.; Mikulić N. (2012.b.): A combined CaO/electrochemical treatment of the landfill leachate from different sanitary landfills in Croatia. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 47, 1749-1758.

 

Pabon S.L.; Gelvez, J.H.S. (2009.): Starting-up and operating a full-scale activated sludge system for slaughterhouse wastewater. Ingenieria e Investigación, 29(2), 53-58.

 

Pan M.; Henry L.G.; Liu R.; Huang X;Zhan, X. (2014.): Nitrogen removal from slaughterhouse wastewater through partial nitrification followed by denitrification in intermittently aerated sequencing batch reactors at 110C. Environnental Technology, 35(4), 470-477.

 

Rajakumar R.; Meenambal T.; Saravanan P.M.; Ananthanarayanan, P. (2012.): Treatment of poultry slaughterhouse wastewater in hybrid upflow anaerobic sludge blanket reactor packed with pleated poly vinyl chloride rings. Bioresource Technology, 103(1), 116-122

 

San Jose, T. (2004.): Bird slaughterhouse: generation and purification of their water. Tecnologia del Agua, 24(251), 48-51.

 

Satyanarayan S.; Ramakant Vanerkar, A.P. (2005.): Conventional approach for abattoir wastewater treatment. Environnental Technology, 26(4), 441-447.

 

Tariq M.; Ahmad M.; Siddique S.; Waheed A.; Shafiq T.; Khan, M.H. (2012.): Optimization of coagulation process for the treatment of the characterized slaughterhouse wastewater. Pakistan Journal of Scientific and Industrial Research, 55(1), 43-48.

 

Tezcan Ün Ü.; Koparal A.S.; Ögütveren, Ü.B. (2009.): Hybrid processes for the treatment of cattleslaughterhouse wastewater using aluminum and iron electrodes. Journal of Hazardous Materials, 164(2-3), 580-586.

 

Tezcan Ün Ü.; Koparal A.S.; Öğütveren, B.Ü. (2008.): Treatment of slaughterhouse wastewater with iron electrode. WIT Transaction of Ecology and the Environment, 111, 545-551.

 

Torkian A.; Eqbali A.; Hashemian, S.J. (2003.): The effect of organic loading rate on the performance of UASB reactor treating slaughterhouse effluent. Resources, Conservation and Recycling, 40(1), 1-11.

 

Widiasa B.I.N.; Johari, S. (2010.): Study on Treatment of Slaughterhouse Wastewater by Electro-coagulation Technique. International Journal of Science and Engineering, 1(1), 25-28.

 

Wu J.; Doan, H. (2005.): Disinfection of recycled redmeat-processing wastewater by ozone. Journal of Chemical Technology and Biotechnology, 80(7), 828-833.

 

Jia Y.; Gao C.; Zhang L.; Jiang, G. (2012.): Effects of Pre-fermentation and Influent Temperature on the Removal Efficiency of COD, NH4 +-N and PO4 3-P in Slaughterhouse Wastewater by Using SBR. Energy Procedia, 16, 1964-1971.

 

Yordanov, D. (2010.): Preliminary study of the efficiency of ultrafiltration treatment of poultry slaughterhouse wastewater. Bulgarian Journal of Agricultural Science, 16(6), 700-704.

 

Zhan X.; Healy M.G., Li, J. (2009.): Nitrogen removal from slaughterhouse wastewater in a sequencing batch reactor under controlled low DO conditions. Bioprocess and Biosystems Engineering, 32(5), 607-614.