Hrvatske vode
 
Valorizacija otpadnih voda prerade maslina
Evaluation of olive oil mill wastewater

Stanka Zrnčević1

Sažetak/Abstract: 

Kompleksnost sastava te dokazana toksičnost otpadnih voda prerade maslina (eng. Olive Oil Mill Wastewater - OOMW) predstavlja veliku opasnost za sve sastavnice okoliša. Zbrinjavanje takvih voda vrlo je specifično i složeno te redovito zahtijeva kombinaciju različitih postupaka obrade, što ima za posljedicu značajan financijski trošak. Međutim, uporabom odgovarajuće tehnologije otpadnu vodu iz prerade maslina moguće je konvertirati u produkte visoke dodane vrijednosti, te je na taj način učiniti manje toksičnom i lakše obradivom. Rad sumarizira nova saznanja o valorizaciji OOMW-a s više od 95 referenci koje mogu poslužiti kao osnova za daljnja istraživanja u tom području te moguću komercijalnu primjenu. Prikazana su dva glavna pristupa valorizaciji otpadne vode i to: izdvajanje biološki aktivnih spojeva iz OOMW-a te procesi biokonverzije tvari prisutnih u otpadnoj vodi u visokovrijedne spojeve. Recikliranje „otpadnih“ tvari iz procesa prerade maslina u skladu je s globalnom tendencijom očuvanja okoliša i pretvaranja otpada u korisne produkte koji mogu naći svoju primjenu u poljoprivredi, kemijskoj, tekstilnoj, farmaceutskoj i prehrambenoj industriji.

 

The composition complexity and proven toxicity of olive oil mill wastewater (OOMW) poses a significant danger to all environmental components. A disposal of such water is very specific and complex, and regularly requires a combination of different treatment procedures, which results in significant financial costs. However, by implementing a suitable technology, OOMW can be converted into products with a high added value, thus making it less toxic and more easily treatable. The paper summarizes new insights into the OOMW evaluation, with over 95 references that can be used as a basis for further investigations in this field and a potential commercial application. Two main approaches to wastewater evaluation are presented: the isolation of biologically active compounds from OOMW and the processes of bioconversion of substances present in wastewater into highly valuable compounds. Recycling of “waste” substances from olive processing is in line with the global trends of environmental protection and transformation of waste into useful products that can be used in agriculture, chemical, textile, pharmaceutical and food industries.

Kategorija: 
Pregledni članak / Review Paper
Ključne riječi/Key words: 

OOMW, toksični učinci, valorizacija, izdvajanje, biokonverzija

OOMW, toxic effects, evaluation, isolation, bioconversion

Podaci o autorima/Authors affiliations: 

1Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu, Marulićev trg 19, 10000 Zagreb, szrnce@fkit.hr

Literatura/References: 

Abrunhosa L.; Oliveira F.; Dantas D.; Gonçalves C.; Belo I. (2013.): Lipase production by Aspergillus ibericus using olive mill wastewater. Bioprocess and Biosystems Engineering, 36, 285-291.

 

Achak M.; Hafidi A.; Ouazzani N.; Mandi L. (2008.): Low cost biosorbent “Banana Peel” for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies. Journal of Hazardous Materials, 166, 117-125.

 

Achak M.; Hafidi A; Mandi L.; Ouazzani N. (2014.): Removal of phenolic compounds from olive mill wastewater by adsorption onto wheat bran. Desalination and Water Treatment, 52, 2875-2885.

 

Achinas S. (2014.): Material flow analysis (MFA) for waste management in olive oil industries sector in South Europe. Journal of Sustainable Development Studies, 5, 29-39.

 

Aguilera M.; Quesada M.T.; del Aguila V.G.; Morillo J.A.; Rivadeneyra M.A.; Ramos-Cormenzana A.; Monteoliva-Sanchez M. (2008.) Characterisation of Paenibacillus jamilae strains that produce exopolysaccharide during growth on and detoxification of olive mill wastewaters. Bioresource Technology, 99, 5640–5644.

 

Aissam, H., Errachidi, F., Penninck, F., Merzouki, M and Benlemlih, M. (2005). Production of tannase by Aspergillus niger HA37 growing on tannic acid and olive mill waste waters. World Journal of Microbiology and Biotechnology, 21, 609-614.

 

Allouche N.; Fki I.; Sayadi S.(2004.): Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. Journal of Agriculural and Food Chemistry, 52, 267-273.

 

Aliakbarian B.; Casazza A.A.; Perego P. (2015): Adsorption of phenolics from olive mill wastewater onto activated carbon. Food Technology and Biotechnology, 53, 207–214.

 

Amor C.; Lucas M.S.; Garcia J.; Dominguez J.R.; De Heredia J.B.; Peres J.A. (2015.): Combined treatment of olive mill wastewater by Fenton’s reagent and anaerobic biological process. Journal of Environmental Science and Health, A., 50, 161-168.

 

Araujo C.; Aguedo M.; Gomes N.; Teixeira J.A.; Belo I., Valorization of olive mill wastewater by the yeast Yarrowia lipolytica. Proceedings of the 9th International Chemical Engineering Conference (CHEMPOR 9), Coimbra, Portugal, 2005, pp.1-6.

 

Athanasoulia E.; Melidis P.; Aivasidis A. (2012.): Anaerobic waste activated sludge co-digestion with olive mill wastewater. Water Science and Technology, 65, 2251-2257.

 

Azaizeh H.; Jadoun J. (2010.): Co-digestion of olive mill wastewater and swine manure using up-flow anaerobic sludge blanket reactor for biogas production. Journal of Water Resource and Protection, 2, 314-321.

 

Azabou S.; Najjar W.; Bouaziz M.; Ghorbel A.; Sayadi S. (2010.): A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques. Journal of Hazardous Materials, 183, 62-69.

 

Awad A.; Salman H.; Hung Y-T. Olive oil waste treatment, in Waste Treatment in the Food Processing Industry, Eds. Wang L.K., Hung Y-T, Lo H.H., Yapijakis C., CRC Press, 2008. pp.119-192.

 

Aytar P.; Gedikli S.; Sam M.; Farizoğlu B.; Çabuk A. (2013.): Sequential treatment of olive oil mill wastewater with adsorption and biological and photo-Fenton oxidation. Environmental Science and Pollution Research, 20, 3060–3067.

 

Bakhov Z.K.; Korazbekova K.U.; Lakhanova K.M. (2014.): The kinetics of methane production from co-digestion of cattle manure. Pakistan Journal of Biological Sciences, 17, 1023-1029

 

Battista F.; Mancini G.; Ruggeri B.; Fino D. (2016.): Selection of the best pretreatment for hydrogen and bioethanol production from olive oil waste products. Renewable Energy, 88, 401–407.

 

Belaid C.; Khadraoui M.; Mseddii S.; Kallel M.; Elleuch B.; Fauvarque J. F. (2013.): Electrochemical treatment of olive mill wastewater treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools. Journal of Environmental Science (China), 25, 220- 230.

 

Belaj A.; Leon L.; Satovic Z.; De la Rosa R. (2011.): Variability of wild olive (Olea europea subesp. Europea var. sylvestris) analyzed by agro/morphological traits and SSR markers. Scientia Horticulturae, 129, 561-569.

 

Bertin L.; Ferri F.; Scoma A.; Marchetti L.; Fava F. (2011.): Recovery of high added value natural polyphenols fromactual olive mill wastewater through solid phase extraction. Chemical Engineering Journal, 171, 1287-1293.

 

Blika, P.S.; Stamatelatou K.; Kornaros M.; Lyberatos G. (2009.): Anaerobic digestion of olive mill wastewater. Global NEST Journal, 11, 364-372.

 

Bouaziz M.; Hammami H.; Bouallagui Z.; Jemai H.; Sayadi S. (2009): Production of antioxidants from olive processing by-products. Electron Journal of Environmental, Agricultural and Food Chemistry, 7, 3231-3236.

 

Bouknana D.; Hammoutia B.; Salghid R.; Jodehe S.; Zarrouka A.; Warade I.; Aounitia A.; Sbaab M. (2014.): Physicochemical characterization of olive oil mill wastewaters in the eastern region of Morocco. Journal of Materials and Environmental Science, 5, 1039-1058.

 

Bulotta S.; Celano M.; Lepore S.M.; Montalcini T.; Pujia A.; Russo D. (2014.): Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: focus on protection against cardiovascular and metabolic diseases. Journal of Translational Medicine, 12, 219-225.

 

Carlozzi P.; Padovani G.; Cinelli P.; Lazzeri A. (2015.): An innovative device to convert olive mill wastewater into a suitable effluent for feeding purple non-sulphur photosynthetic bacteria. Resources 4, 621-636.

 

Carofiglio V.E.; Romano R.; Servili M.; Goffredo A.; Alifano P.; Veneziani G.; Demitri C.; Centrone D.; Stufano P. (2015.): Complete valorization of olive mill wastewater through an integrated process for poly-3-hydroxybutyrate production. Journal of Life Sciences, 9, 481-493.

 

Cerrone F.; del Mar Sánchez-Peinado1 M.; Juárez-Jimenez B.; González-López J.; Pozo C. (2010.): Biological treatment of two-phase olive mill wastewater (TPOMW, alpeorujo): Polyhydroxyalkanoates (PHAs) production by Azotobacter strains. Journal of Microbiology and Biotechnology, 20, 594–601.

 

Chaari L.; Elloumi N.; Mseddi S.; Gargouri K.; Rouina B.B.; Mechichi T.; Kallel M. (2015.): Changes in soil macronutrients after a long-term application of olive mill wastewater. Journal of Agricultural Chemistry and Environment, 4, 1-13.

 

Chakroun H.; Sayadi S.; Mechichi T.; Dhouib A. (2009.): High level of laccases production by Trametes trogii culture on olive mill wastewater-based media, application in textile dye decolorization. Journal of Chemical Technology and Biotechnology, 84, 1527–1532

 

Chandrasekhar K.; Lee Y.-L.; Lee D.-W. (2015.): Biohydrogen production: Strategies to improve process efficiency through microbial routes. International Journal of Molecular Sciences, 16, 8266-8293.

 

Coskun T.; Debik E.; Manav Demir N. (2010.): Treatment of olive mill wastewaters by nanofiltration and reverse osmosis membranes. Desalination, 259, 65-70.

 

Crognale S.; D’Annibale A.; Federici F.; Fenice M.; Quaratino D.; Petruccioli M. (2006.): Olive oil mill wastewater valorisationby fungi. Journal of Chemical Technology and Biotechnology, 81, 1547–1555.

 

D’Annibale A.; Sermanni G.G.; Federici F.; Petruccioli M. (2006.): Olive-mill wastewaters: a promising substrate for microbial lipase production. Bioresource Technology, 97, 1828–1833.

 

Dareioti M.A.; Dokianakis S.N.; Stamatelatou K.; Zafiri C.; Kornaros M. (2010.): Exploitation of olive mill wastewater and liquid cow manure for biogas production. Waste Management, 30, 1841-1848.

 

Deeb A.A.; Fayyad M.K.; Alawi M.A. (2012.): Separation of polyphenols from Jordanian olive oil mill wastewater. Chromatography Research International, 2012, online version.

 

De Leonardis A.; Macciola V.; Naag A. (2009.): Antioxidant activity of various phenol extracts of olive-oil mill wastewaters. Acta Alimentaria, 38, 77-86.

 

Demerche S.; Nadoura M.; Larrocheb C.; Moulti-Matia F.; P. Michaudb P. (2013.): Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochemistry, 48, 1532–1552.

 

Di Bene C.; Pellegrino E.; Debolini M.; Silvestri N.; Bonari E.: (2013.): Short- and long-term effects of olive mill wastewater land spreading on soil chemical and biological properties. Soil Biology and Biochemistry, 56, 21-30.

 

Državni zavod za statistiku, Poljoprivredna proizvodnja u 2014.

 

Duarte J.C.; Pires S.O.; Paixão S.M.; M. Céu Sàágua M.C.: New approaches to olive oil mill waste bioremediation, in Olive Oil and Health, Ed. Corrigan J.D., Nova Science Publishers, Inc., 2011, pp. 1-17.

 

El-Abbassi A.; Kiai H.; Hafidi A. (2012.): Phenolic profile and antioxidant activities of olive mill wastewater. Food chemistry, 132, 406-412.

 

El Asli A.; Qatibi A.I. (2009.): Ethanol production from olive cake biomass substrate. Biotechnology and Bioprocess Engineering, 14, 118-122.

 

El Shimi H.I.; Moustafa S. S. (2016.): Phycoremediation of olive wastewater for sustanaible biofertilizer and biodiesel production. ARPN Journal of Engineering and Applieded Science, 11, 10259-10272.

 

Ena A.; Pintucci C.; Carlozzi P. (2012.): The recovery of polyphenols from olive mill waste using two adsorbing vegetable matrices. Journal of Biotechnology, 157, 573-577.

 

Eroğlu E.; Gündüz U.; Yücel M.; Türker L.; Eroğlu I. (2004.): Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. International Journal of Hydrogen Energy, 29, 163-171.

 

Eroğlu E.; Eroğlu I.; Gündüz U.; Türker L.; Yücel M. (2006.): Biological hydrogen production from olive millwastewater with two-stage processes. International Journal of Hydrogen Energy, 31 1527 – 1535.

 

Eroğlu E., Eroğlu I., Gündüz U.; Yücel M. (2008.): Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater. Bioresource Technology, 99, 6799–6808.

 

Ertuğrul S.; Dönmez G.; Takaç S. (2007.): Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity. Journal of Hazardous Materials, 149, 720–724.

 

Fountoulakis M.S.; Drakopoulou S.; Terzakis S.; Georgaki E. Manios T. (2008.): Potential for methane production from typical Mediterranean agro-industrial byproducts. Biomas and Bioenergy, 32, 1555-161.

 

Frascari D.; Molina Bacca A.E.; Zama F.; Bertin L.; Fava F.; Pinelli D. (2015.): Olive mill wastewater valorization through phenolic compounds adsorption in a continuous flow column. Chemical Engineering Journal, 283, 293-303.

 

Galanakis C.M.; Goulas V.; Tsakona S.; Manganaris G.A.; Gekas V. (2013.): A knowledge base for the recovery of natural phenols with different solvents. International Journal of Food Properties, 16, 382-396.

 

Galanakis C. M.; Tornberg E.; Gekas V. (2010.a): A study of the recovery of the dietary fibres from olive mill wastewater and the gelling ability of the soluble fibre fraction. LWTFood Science and Technology, 43, 1009-1017.

 

Galanakis C. M.; Tornberg E., Gekas, V. (2010.b): Dietary fiber suspensions from olive mill wastewater as potential fat replacements in meatballs. LWT-Food Science and Technology, 43, 1018-1025.

 

Galiatsatou P.; Metaxas M.; Arapoglou D.; Kasselouri-Rigopoulou V. (2002.): Treatment of olive mill waste water with activated carbons from agricultural byproducts. Waste Management, 22, 803-12.

 

Galli E.; Pasetti L.; Fiorelli F. Tomati U. (1997.): Olivemill wastewater composting. Microbiological aspects. Waste Management and Research, 15, 323-330.

 

Ginos A.; Manios T.; Mantzavinos D. (2006.): Treatment of olive mill effluents by coagulation–flocculation–hydrogen peroxide oxidation and effect on phytotoxicity. Journal of Hazardous Materials B, 133, 135–142.

 

Ghanbari R.; Anwar F.; Alkharfy K.M.; Gilani A-H.; Saari N. (2012.): Valuable Nutrients and Functional Bioactives in Different Parts of Olive (Olea europaea L.) – Review. International Journal of Molecular Sciences, 13, 3291–3340.

 

Gonçalves C.; Lopes M.; Ferreira J.P.; Belo I. (2009.): Biological treatment of olive mill wastewater by nonconventional yeasts. Bioresource Technology, 100, 3759-3763.

 

Gonçalves M.R.; Marques I.P.; Correia J.P. (2012.): Electrochemical mineralization of anaerobically digested olive mill wastewater. Water Research, 46, 4217-4225.

 

Gonzalez-Lopez J.; Pozo C.; Martınez-Toledo M.V.; Rodelas B.; Salmerón V. (1995.): Production of polyhydroxxalcanoates by Azotobacter chroococcum H23 in wastewater from olive oil mills (alpechın). International Biodeterioration and Biodegradation, 38, 271-276.

 

Gonzalez-Lopez J.; Rodelas B.; Pozo C.; Salmerón V. (2005.): Liberation of amino acids by heterotrophic nitrogen fixing bacteria. Amino Acids, 28, 363-367.

 

Goula A.M.; Lazarides H.N. (2015.): Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: The cases of olive mill and pomegranate wastes. Journal of Food Engineering, 167, 45–50.

 

Hachicha S.; Cegarra J.; Sellami F.; Hachicha R.; Drira N.; Medhioub K.; Ammar E. (2009.): Elimination of polyphenols toxicity from olive mill wastewater sludge by its co-composting with sesame bark. Journal of Hazardous Materials, 30, 1131-1139.

 

Hanafi F.; Mountadar M.; Etahiri S.; Fekhaoui M.; Assobhei O. (2013.): Biodegradation of toxic compounds in olive mill wastewater by a newly isolated potent strain: Aspergillus niger van Tieghem. Journal of Water Resource and Protection, 5, 768-774.

 

Inglezakis V. J.; Moreno J. L.; Doula M. (2012.): Olive oil waste management EU legislation: Current situation and policy recommendations. International Journal of Chemical and Environmental Engineering Systems, 3, 65-77.

 

IOC- Market Newsletter., 2016.

 

Ismail H.; Azza A.M.; El-All A.; Hassanein H.A.M. (2013.): Biological influence of some microorganisms on olive mill wastewater. Egyptian Journal of Agricultural Research, 91, 1-9.

 

Jerman Klen T., Mozetič Vodopivec B. (2011.): Ultrasonic extraction of phenols from olive mill wastewater: Comparison with conventional methods. Journal of Agricultural and Food Chemistry, 59, 12725–12731.

 

Jerman Klen T, Mozetič Vodopivec B (2012.): Optimisation of olive oil phenol extraction conditions using a highpower probe ultrasonication. Food chemistry, 134, 2481-2488.

 

Juang R.S.; Lin S.H.; Cheng C.H. (2006.): Liquid-phase adsorption and desorption of phenol onto activated carbon with ultrasound. Ultrasonics Sonochemistry, 13, 251-260.

 

Kalogerakis N.; Politi M.; Foteinis S.; Chatzisymeon E.; Mantzavinos D. (2013.): Recovery of antioxidants from olive mill wastewaters: A viable solution that promotes their overall sustainable management. Journal of Environmental Management,128, 749-758.

 

Kavvadias V.; Doula M.K.; Komnitsas K.; Liakopoulou N. (2010.): Disposal of olive oil mill wastes in  evaporation ponds: effects on soil properties. Journal of Hazardous Materials, 182, 144-155.

 

Khatib A.; Fathi Aqra F.; Yaghi N.; Subuh Y.; Hayeek B.; Musa M.; Basheer S.; Sabbah I. (2009.): Reducing the environmental impact of olive mill wastewater. American Journal of Environmental Sciences, 5, 1-6.

 

Kiliç M. Y.; Yonar T.; Kestioğlu K. (2013.): Pilotscale treatment of olive oil mill wastewater by physicochemical and advanced oxidation processes. Environmental Technology, 34, 1521-1531.

 

Kougias P.G.; Kotsopoulos T.A.; Martzopoulos G.G. (2015.): Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure, Renewable Energy, 69, 202–207.

 

Lafka T-I.; Lazou A.; Sinanoglou V.; Lazos E.S. (2011.): Phenolic and antioxidant potential of olive oil mill wastes. Food Chemistry, 125, 92-98.

 

Leouifoudi I.; Harnafi H.; Zyad A. (2015.): Olive mill waste extracts: Polyphenols content, antioxidant, and antimicrobial activities. Advancees in Pharmacological Science, 2015, on-line version.

 

Leouifoudi I.; Zyad A.; Amechrouq A.; Oukerrou M.A.; Mouse H.A.; Mbarki M. (2014.): Identification and characterisation of phenolic compounds extracted from Moroccan olive mill wastewater. Food Science and Technology (Campinas), 34, on-line version.

 

Leathers T. (2003.): Biotechnological production and applications of pullulan. Applied Microbiology and Biotechnology, 62, 468-473.

 

Lima G.P.P.; Vianello F.; Corrêa C.R.; Campos R.A.; Borguini M.G. (2014.): Polyphenols in fruits and vegetables and its effect on human health. Food and Nutrition Sciences, 5, 1065-1082.

 

Lopez M.J.; Moreno J.; Ramos-Cormenzana A. (2001.): Xanthomonas campestris strain selection for xanthan production from olive mill wastewaters. Water Research, 35,1828-1830.

 

Lozano-Sánchez J.; Castro-Puyana M.; Mendiola J.A.; Segura-Carretero A.; Cifuentes A.; Ibáñez E. (2014.): Recovering bioactive compounds from olive oil filter cake by advanced extraction techniques. International Journal of Molecular Sciences, 15, 16270-16283.

 

Maduna Valkaj K.; Kaselj I.; Smolković J.; Zrnčević S.; Kumar N.; Murzin D. Yu. (2014.): Catalytic wet peroxide oxidation of olive oil mill wastewater over zeolite based catalyst. Chemical Engineering Transaction, 43, 1-6.

 

Maduna Valkaj K.; Kaselj I.; Islamović S.; Zrnčević S. (2015.): Katalitička oksidacija otpadnih voda industrije obrade maslina vodikovim peroksidom. Hrvatske vode, 94, 257-266.

 

Mann J.; Markham J.L.; Peiris P.; Spooner-Hart R.N.; Holford P.; Nair N.G. (2015.): Use of olive mill wastewater as a suitable substrate for the production of laccase by Cerrena consors. International Biodeterioration and Biodegradation, 99,138-145.

 

Martinez G.A.; Scoma A.; Rebecchi S.; Bertini L.; Braunegg G.; Fava F. (2013.): Production of polyhydroxyalkonates by Cupriavidus necator from treated olive mill wastewater. Environmental Engineering and Management Journal, 12, 97-100.

 

Massadeh M. I.; Khalid F. (2014.): Acetone-butanolethanol (ABE) production by anaerobic microflora growing on olive mill wastewater. Journal of Biobased Materials and Bioenergy, 8, 94

 

Massadeh M.I.; Modallal N. (2009.): Ethanol production from olive mill wastewater (OMW) pretreated with Pleurotus sajor-caju. Energy and Fuels, 22, 150-154.

 

Michael I.; Panagi A.; Ioannou L. A.; Frontistis Z.; Fatta-Kassinos D. (2014.): Utilizing solar energy for the purification of olive mill wastewater using a pilot-scale photocatalytic reactor after coagulation-flocculation. Water Research, 60, 28-40.

 

Morillo J.A.; del Aguila V.G.; Aguilera M.; Ramos-Cormenzana A.; Monteoliva-Sanchez M. (2007.): Production and characterization of the exopolysaccharide produced by Paenibacillus jamilae grown on olive mill-wastewaters. World Journal of Microbiology and Biotechnology, 23, 1705–1710.

 

Morsi M.K.S.; Samy M. Galal S.M..; Alabdulla O. (2016.): Antioxidative activity of olive pomace polyphenols obtained by ultrasound assisted extraction. IOSR Journal of Environmental Science, Toxicology and Food Technology, 10, 95-100.

 

Nassara N. N.; Arab L. A.; Mareia N. N.; Abu Ghanimb M. M.; Dwekatb M. S.; Sawalhab S. H. (2014.): Treatment of olive mill based wastewater by means of magnetic nanoparticles: Decolourization, dephenolization and COD removal. Environmental Nanotechnology, Monitoring and Management, 1–2, 14–23.

 

Ntougias S.; Baldrian P.; Ehaliotis C.; Nerud F.; Merhautová V.; Zervakis G.I. (2015.): Olive mill wastewater biodegradation ptential of white-rot fungi - Mode of action of fungal culture extracts and effects of ligninolytic enzymes. Bioresource Technology, 189, 121-130.

 

Ozcan T.; Akpinar-Bayizit A.; Yilmaz-Ersan L.; Delikanli B. (2014.): Phenolics in human health. International Journal of Chemical Engineering and Applications, 5, 393-396.

 

Omer A.M. (2012.) Production of organic biofertilizer from olive mill wastewater. Australian Journal of Basic and Applied Sciences, 6, 654-663.

 

Oreščanin V.; Kollar R.; Nađ K. (2015.a): Kemijska/Elektrokemijska obrada otpadnih voda prerade maslina. Hrvatske vode, 94, 267-276.

 

Oreščanin V. (2015.b): Otpadne vode od prerade maslinaporijeklo, kemijski sastav, toksični učinci i metode pročišćavanja. Hrvatske vode, 92, 267-276.

 

Otles S.; Selek I. (2012.): Treatment of olive mill wastewater and the use of polyphenols obtained after treatment. International Journal of Food Studies, 1, 85-100.

 

Oz N.A.; Uzun A.C. (2015.): Ultrasound pretreatment for enhanced biogas production from olive mill wastewater. Ultrasonics Sonochemistry, 22, 565–572.

 

Özkaya B. (2006): Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. Journal of Hazardous Materials, 129, 158-163.

 

Padovani G.; Carlozzia P.; Seggianib M.; Cinellib P.; Vitolo S.; Lazzeri A. (2016.): PHB-rich biomass and bio-H2 production by means of photosynthetic microorganisms. Chemical Engineering Transaction, 49, 55-60.

 

Papadopoulou C.; Tsoumani A.; Ntaikou I.; Lyberatos G. Continous fermentative hydrogen production from olive mill wastewater by mixed acidogenic culture. Effect of periodic feeding mode on hydrogen yield. Proceedings of the 11th Confeerence of Environmental Science and Technology, Crete, 2009, pp. 1076-1083.

 

Papanikolaou S.; Galiotou-Panayotou M.; Fakas S.; Komaitis M.; Aggelis G. (2008.): Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewaterbased media. Bioresource Technology, 99, 2419-2428.

 

Papaphilippou P.C., Yiannapas C., Politi M., Daskalaki V.M., Michael C., Kalogerakis N., Mantzavinos D., Fatta- Kassinos, D. (2013.): Sequential coagulation–flocculation, solvent extraction and photo-Fenton oxidation for the valorization and treatment of olive mill effluent. Chemical Engineering Journal, 224, 82-88.

 

Paredes C.; Bernal M.P.; Roig A.; Cegarra J. (2001.): Effects of olive mill wastewater addition in composting of agroindustrial and urban wastes. Biodegradation, 12, 225–234.

 

Pelendridou K.; Michailides M. K.; Zagklis D. P.; Tekerlekopoulou A. G.; Paraskeva C. A.; Vayenas D. V. (2014.): Treatment of olive mill wastewater using a coagulation–flocculation process either as a single step or as post-treatment after aerobic biological treatment. Journal of Chemical Technology and Biotechnology, 89, 1866-1874.

 

Pinelli D.; Molina Bacca A.E.; Kaushik A.; Basu S.; Nocentini M.; Bertini L.; Frascari D. (2016.): Batch and continuous flow adsorption of phenolic compounds from olive millwastewater: A comparison between nonionic and ion exchange resins. International Journal of Chemical Engineerinng, 2016, 1-13.

 

Piperidou C.I.; Chaidou C.I.; Stalikas C.D.; Soulti K.; Pilidis G.A.; Balis C. (2000.): Bioremediation of olive oil mill wastewater.Chemical alterations induced by Azotobacter vinelandii. Journal of Agricultural and Food Chemistry, 48, 1941-1048

 

Pontoni L.; d′Antonio G.; Esposito G.; Fabbricino M.; Frunzo L.; Pirozzi F. (2015.): Thermal pretreatment of olive mill wastewater for efficient methane production: control of aromatic substances degradation by monitoring cyclohexane carboxylic acid. Journal of Environmental Technology, 36, 1785-1794.

 

Ramos-Cormenzana A.; Monteoliva-Sanchez M.; Lopez M. J. (1995.): Bioremediation of alpechin. International Biodeterioration and Biodegradation, 35, 249-268.

 

Rigane H.; Medhioub K. (2011.): Cocomposting of olive mill wastewater with manure and agro-industrial wastes. Compost Science and Utilization, 19, 129-134.

 

Roig A.; Cayuela M.L.; Sanchez-Monedro M.A. (2006.): An overviev on olive mill wastes and their valorisation methods. Waste Menagement, 26, 960-969.

 

Rousidou C.; Papadopoulou K.; Zervakis G.; Singh B.K.; EhaliotisC.; D.G. Karpouzas D.G. (2010.): Repeated application of diluted olive mill wastewater induces changes in the structure of the soil microbial community, European Journal of Soil Biology, 46, 34–40.

 

Rusan M.J.M., Albalasmeh A.A.; · Hanan I. Malkawi H.I. (2016.): Treated olive mill wastewater effects on soil properties and plant growth. Water Air and Soil Pollution, 227, 135-145.

 

Sabbah I.; Marsook T.; Basheer S. (2004.): The effect of pretreatment on anaerobic activity of olive mill wastewater using batch and continuous systems. Process Biochemistry, 39, 1947–1951.

 

Salgado J.M.; Abrunhosa L.; Venâncio A.; Domínguez J.M.; Belo I. (2016.): Combined bioremediation and enzyme production by Aspergillus sp. in olive mill and winery wastewaters. International Biodeterioration and Biodegradation, 110, 16-23.

 

Salman M.; Abu-Khalaf N.; Abu Rumaileh B.; Jawabreh M.; Abuamsha R. (2014.): Detoxification of olive mill wastewater using the white rot fungus Phanerochaete chrysosporium. International Journal of Environment and Sustainability, 3, 1-6.

 

Salomone R.; Cappelletti G.M.; Malandrino O.; MistrettaM.; Neri E.; Nicoletti G.M.; Notarnicola B.; Pattara C.; Russo C.; Saija G. Life cycle assessment in the olive oil sector, in In Life Cycle Assessment in the Agri-food Sector (Eds. Notarnicola B.; Salomone R.; Petti L.; Renzulli P.; Roma R.; Cerutti A.K.), Springer, New York, 2015., pp. 57-123.

 

Sannino F.; De Martino A.; Capasso R.; El Hadrami I. (2013.): Valorisation of organic matter in olive mill wastewaters: recovery of highly pure hydroxytyrosol. Journal of Geochemical Exploration, 129, 34-39.

 

Sarris D.; Matsakas L.; Aggelis G.; Koutinas A. A.; Papanikolaou S. (2014.): Aerated vs non-aerated conversions of molasses and olive mill wastewaters blends into bioethanol by Saccharomyces cerevisiae under non-aseptic conditions. Industrial Crops and Products, 56, 83–93.

 

Schievano A.; Adani F.; Buessing L.; Botto A.; Casoliba E.N.; Rossoni M.; Goldfarb J.L. (2015.): An integrated biorefinery concept for olive mill waste management: supercritical CO2 extraction and energy recovery. Green Chemistry, 17, 2874-2887.

 

Scoma A.; Bertini L.; Zanaroli G.; Fraraccio S.; Fava F. (2011.): A physicochemical-biotechnological approach for an integrated valorization of olive mill wastewater. Bioresource Technology, 102, 10273-10279.

 

Singh K.P.; Malik A.; Sinha S.; Ojha P. (2008.): Liquidphase adsorption of phenols using activated carbons derived from agricultural waste material. Journal of Hazardous Materials, 150, 626–641.

 

Stamatakis G. (2010.): Energy and geo-environmental applications for olive mill wastes. A review. Hellenic Journal of Geosciences, 45, 269-282.

 

Takaç S.; Karakaya A. (2009.): Recovery of Phenolic Antioxidants from Olive Mill Wastewater. Recent Patents on Chemical Engineering, 2, 230-237.

 

Tomati U.; Galli E.; Pasetti L.; Volterra E. (1995.): Bioremediation of olive-mill wastewaters by compostinng. Waste Management and Research, 13, 509-518.

 

Tornberg E.; Galanakis C. Olive waste recovery, WO2008082343 A1, 2008.

 

Toscano P.; Casacchia T.; Diacono M.; Montemurro F. (2013.): Composted olive mill by-products. Compost characterization and application on olive orchards. Journal of Agricultural Science and Technology, 15, 627-638.

 

Tsagarakis E.; Lazarides H.N.; Petrotos K.B., Olive mill wastewater treatment, in Utilization of by-products and treatment of waste in the food industry, Eds. OreopoulouV.; Russ W., Springer, 2007., pp.133-157.

 

Tsakona S.; Galanakis C.M.; Gekas V. (2012.): Hydroethanolic mixtures for the recovery of phenols from Mediterranean plant materials. Food and Bioprocess Technology, 5, 1384-1393.

 

Zenjari B.; El Hajjouji H.; Ait-Baaddi G.; Bailly J.R.; Revel J.C.; Nejmeddine A.; Hafidi M. (2006.): Eliminating toxic compounds by composting olive wastewaterstraw mixtures. Journal of Hazardous Materials, 138, 433-437.